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ABSTRACT

Software Product Line Engineering (SPLE) creates configurable
platforms that can be used to efficiently produce similar, and yet
different, product variants. SPLs are typically modular such that it is
easy to connect different blocks of code together, creating different
variations of the product. There are many variability implementa-
tion mechanisms to achieve an SPL. This paper shows how static
polymorphism can be used to implement variability, through a case
study of IBM’s open-source Eclipse OMR project. We discuss the
current open problems and challenges this variability implementa-
tion mechanism raises and highlight technology gaps for reasoning
about variability in OMR. We then suggest steps to close these gaps.

1 INTRODUCTION

As software becomes more pervasive, the same system often has to
work in various environments, and also cater to specific customer
needs. For example, the underlying firmware of a printer needs
to support different models, some of which may have additional
functionality such as supporting email scans. Software variability
is the ability of a software system or artifact to be efficiently ex-
tended, changed, customized, or configured for use in a particular
context [12]. To avoid creating a new software system for each new
platform or customer, Software Product Lines (SPLs) were introduced.
An SPL is a collection of similar software products that support
different features (units of functionality), but share a common code
base [5]. SPLs provide a simple but efficient way of implementing
software variability to reuse existing programs [11]. SPLs have been
adopted in both industry and open source systems [5].

In order to create SPLs, it is important to have an underlying vari-
ability implementation mechanism that separates common code, or
functionality, that is included in every product from configurable
functionality that is only included in certain products. Developers
can then configure the system to indicate the desired functional-
ity. There are many possible variability implementation mecha-
nisms, such as using a preprocessor, parameters, the build system,
feature-oriented programming, or even simply design patterns [5].
Regardless of the mechanism, a system with n optional, config-
urable features can result in 2" product variants, which makes it
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hard to reason about all the SPL products. Variability-aware analy-
ses, or family-based analyses [5], where all variants of a software
are simultaneously analyzed, emerged to help with such reasoning.
While there are many variability implementation mechanisms [5],
most of the literature that studied variability in practice focused on
build-time variability, specifically using a pre-processor for condi-
tional compilation. However, different variability implementation
mechanism pose different challenges. Exploring variability imple-
mentation mechanisms used in practice and understanding the
challenges they impose on family-based analyses is important to
drive SPL research forward and ensure technology transfer.

In this work, we discuss how static polymorphism in C++ can be
used to implement variability in an industrial setting. Specifically,
we discuss IBM’s open-source Eclipse OMR [2] project, a language-
agnostic library of run-time components developed in C++ which
leverages variability to support any programming language on
multiple architectures. We discuss the challenges involved in OMR’s
variability design and highlight the current technology gaps in
supporting its maintenance through reasoning about all variants of
the system. We sketch out a path to bridge this gap by describing
how variability-aware analyses for this setting can be designed.

2 BACKGROUND AND RELATED WORK

Variability Implementation Mechanisms There are different bind-
ing times for software variability such as at build-time, load-time,
and run-time. There are various variability implementation mech-
anisms that can be used for the different binding times [5, 25],
ranging from simple mechanisms such as using the build system to
compile particular modules depending on the feature selection to
more sophisticated development paradigms such as feature-oriented
programming [8]. FOP is a composition-based approach for build-
ing software by dividing an SPL into feature modules [5]. Sev-
eral tools and programming languages were proposed to support
feature-oriented programming., including the AHEAD tool suite [8],
FeatureHouse [6], and FeatureC++ [7]. While FOP specifically ad-
dresses software variability by introducing the idea of refinements
as opposed to inheritance, it has not yet been widely adopted in
practice, and to the best of our knowledge, there are no large in-
dustrial or open-source systems that use FOP.

The most studied variability implementation mechanism in the
literature is using the C preprocessor’s #ifdef directives. The Linux
kernel in particular, with over 12,000 configurable features, is a pop-
ular subject of study. Many researchers studied the evolution of the
Linux kernel (e.g., [19]) or inconsistencies that arise from relying
on the C preprocessor (e.g. [21, 26]). Examples of other discussed
mechanisms include plug-in based systems (e.g., WordPress [22]),
systems with run-time variability using if conditions (e.g., Mozilla
Firefox [9]), systems using feature toggles (Google Chrome) [23],
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and systems with load-time configuration options (e.g., Android
apps [18]). While object-orientation and design patterns have been
discussed as variability implementation mechanisms [5], to the best
of our knowledge, there has been no work that discusses a large
industrial or open-source project that uses these variability mecha-
nisms. Specifically, we found no work discussing the impact and
challenges of using static polymorphism to implement variability.

Variability-aware Analysis Understanding the code of a software
system and properly testing it is essential for software quality and
maintenance. This becomes more complicated in the context of an
SPL with n optional features since instead of having one product to
analyze and test, there are 2" products. Analyzing all these products
in separation is not feasible. Thus, many analysis strategies have
been proposed in the literature ranging from sampling configura-
tions to analyzing all configurations in a more efficient way. Thim
et al. [27]’s recent survey summarizes all these analysis techniques.
Since sampling strategies are not complete, much research effort
has focused on variability-aware analyses that simultaneously ana-
lyze all products. To avoid a brute-force mechanism, they analyze
shared code only once and analyze multiple variants of the code
only when necessary. Again, creating variability-aware analyses
has been most popular in the context of C code with #ifdef direc-
tives. TypeChef [17] and SuperC [15] are two such efforts. While
TypeChef has been used for analyzing many preprocessor-based
systems, including some in Java, it does not currently support C++.
Hu et al. [16] provided a related effort, based on symbolic execu-
tion, to analyze the conditional compilation of C++ header files.
However, symbolic execution is typically expensive and does not
always scale to large systems [4]. Similar variability-aware analysis
efforts have been proposed for systems using load-time or run-time
variability [22, 27]. While previous efforts can guide the design of
a variability-aware analysis tool for C++, there does not currently
exist a robust tool for this purpose, especially when additional
variability is created through the notion of static polymorphism.

3 ECLIPSE OMR BACKGROUND

Eclipse OMR [2] is an open-source C++ library introduced by IBM.
It consists of multiple components for building language run-times,
such as a compiler, garbage collector (GC), and a diagnostic engine,
that are equipped for multiple architectures. These components are
not created for a specific language. Instead, programming-language
developers can leverage the designed software variability to add
functionality to OMR to support their specific language.

Project History OMR traces back to the IBM Java Virtual Ma-
chine, J9, as well as its Just in Time (JIT) compiler, Testarossa [24].
Testarossa is a multi-target compiler technology that translates Java
bytecode to machine code, in order to accelerate program execution.
It currently supports X86, Power, Z, and ARM platforms.

After successfully implementing Testarossa for Java, IBM adapted
the compiler to other languages, including COBOL and other propri-
etary languages and runtime systems. This created the Testarossa
SPL, which used dynamic polymorphism and build-time selection
to achieve software variability. A changing industry suggested that
it may be time for an entire language-runtime SPL. This hypothesis
was the genesis of the OMR project, which refactored both the
compiler component and the rest of the J9 JVM system to extract
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the core into a set of code called OMR. The idea of OMR was that
many SPLs can be built from the core component of OMR, which
is intended to be itself largely language independent. While SPL
concepts lend themselves well to compiler design, Eclipse OMR
introduces SPLs for other run-time components as a bet that SPLs
can be applied to language run-times.

As a result, the compiler component was refactored to use static
polymorphism to express variability, moving language-specific code
into subclasses. The GC also used subclasses; however, it has so far
used dynamic dispatch to reflect polymorphism, although a move to
delegation is afoot at the time of writing. In our previous work [14],
we described the refactoring process of the compiler component,
as well as the lessons learned from it, but without focusing on the
SPL and variability perspective — which is the focus of this paper.

Project Structure and Size OMR has 777,546 lines of code (LOC)
according SLOCCount [3] in June 2017, and 73 contributors accord-
ing to GitHub’s statistics. Most of the source files (80%) are cpp
files, and the source code is divided into individual component di-
rectories: Compiler in compiler, Garbage Collector in gc, etc. This
allows the flexibility of having different variability implementation
in different components. For example, the GC component heavily
uses #ifdef directives whereas the Compiler mostly uses static
polymorphism. This paper will focus on the variability implemen-
tation in the Compiler component.

Static Polymorphism Polymorphism is commonly used in object-
oriented languages to enable access to multiple related behaviors,
and can be used to implement variability [5]. In C++, polymorphism
is commonly implemented using virtual functions that are dynami-
cally bound to their implementation. This is called dynamic poly-
morphism, and is achieved by having pointers to direct the function
to the right implementation [10]. However, dynamic polymorphism
adds performance overhead [13], which is why OMR resorted to
static polymorphism that resolves all inheritence chains and func-
tion calls at compile time. Static polymorphism is usually associated
with the Curious Recurring Template Pattern (CRTP) [10]. In C++,
CRTP exploits template classes and static casting to implement in-
heritance. However, OMR uses a different implementation of static
polymorphism that we explain in detail in Section 4.

4 VARIABILITY IMPLEMENTATION IN OMR

Eclipse OMR supports three dimensions for product variability: (1)
language variability, (2) platform variability, and (3) feature vari-
ability in some components. Given n features, the total number of
unique OMR products is |languages| * |platforms| * 2”. OMR cur-
rently supports five architectures: X86/i386, X86/AMDG64, Power,
ARM, and Z, and is used to develop run-time components for Java,
Ruby, and Python. The number of supported programming lan-
guages is currently small, but is expected to increase since OMR’s
goal is to enable the quick development of language runtimes.

As previously stated, we focus on the compiler component. In
general, the variability implementation mechanism used in the com-
piler component is static polymorphism. In terms of implementation,
OMR developers initially wanted to use the typical CRTP used to
implement static polymorphism (see Section 3). However, due to
the concern of introducing large amounts of template code that may
bloat the system, a customized notion of static polymorphism was
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Figure 1: Example file hierarchy and inheritance hierarchy in Eclipse OMR

created based on the idea of extensible classes. Extensible classes
are simply a hierarchy of normal C++ classes that are organized
in a special way to allow the compiler to find the most extended
implementation of a member function, i.e., the member function in
the most derived class, no matter where this function is called from.
This special organization depends on several building blocks that
we now discuss.

4.1 Directory Structure

Common source code across all architectures is placed in the main
directory of the compiler component, and the architecture-specific
code for each platform is in a nested directory named after each
platform. For example, CodeGenerator is part of the compiler’s
implementation, responsible for generating intermediate-language
code. CodeGenerator is one of the classes that have different imple-
mentations according to the target programming language and ar-
chitecture. Since CodeGenerator is part of the compiler component,
its source files are under the compiler directory. The common code
across all products is placed in a directory directly under compiler,
whereas the specific code that customizes CodeGenerator for the Z
architecture, for example, is inside the z directory. Figure 1a shows
the directory structure of the compiler component.

4.2 Inheritance

To support architecture-specific functionality, OMR has an exten-
sible class hierarchy that mimics the directory structure. To elab-
orate, we take the CodeGenerator extensible class hierarchy as

an example. There is a CodeGenerator class in each architecture-
specific directory as shown in Figure 1a. Each CodeGenerator
class extends its less specific counterpart in the parent direc-
tory. For example, CodeGenerator inside ARM extends the main
CodeGenerator. The CodeGenerator inside i386 extends the x86
one, which in turn extends the main CodeGenerator. Since C++
does not allow multiple declarations with the same class name,
OMR developers created a unique namespace for each architec-
ture, which mostly corresponds to the directory structure. The
base class in any extensible hierarchy, which would be in the file
compiler/codegen/OMRCodeGenerator . hpp in Figure 1a, has the
namespace OMR, while the rest of the classes have nested names-
paces according to the corresponding architecture. Figure 1b shows
the full extensible class hierarchy for CodeGenerator.

4.3 Connectors

Note how all classes apart from TR: : CodeConnector are abstract
classes. This is because developers who use OMR to implement a
language runtime for a new programming language need to add
concrete classes to the bottom of the class hierarchy. The intuitive
way to extend the class hierarchy for all the supported architec-
tures is to create a concrete class that extends the most specific
class in that class hierarchy for every supported namespace. For
example, to extend CodeGenerator to work for a new language,
lang, one would create a 1ang: : CodeGenerator class that extends
X86: :CodeGenerator if targeting x86, P: : CodeGenerator if tar-
geting power, and so on. Although C++ supports multiple inheri-
tance, it is not possible to make use of it when the parent class is
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#ifndef OMR_CODEGENERATOR_CONNECTOR
#define OMR_CODEGENERATOR_CONNECTOR
#else
#error multiple definition of OMR::X86::i386 :: CodeGenerator
#endif
namespace OMR {typedef
OMR:: X86::i386 :: CodeGenerator CodeGeneratorConnector ;}
namespace OMR {
namespace X86 {
namespace 386 {
class OMR_EXTENSIBLE CodeGenerator :
public OMR::X86:: CodeGenerator {

1}

Listing 1: Using typdef to connect OMR::X86::i386::Code
Generator to OMR::CodeGeneratorConnector

still uncertain due to architecture variability. For example, assume
a function f () is implemented in the CodeGenerator classes in all
namespaces. If the language-specific CodeGenerator class tries to
call f (), the compiler would complain that f() is ambiguous.

With static polymorphism, all variability in the inheritence hi-
erarchy must be resolved at compile time to gain efficiency over
dynamic polymorphism. This means that at compile time, a single
linear hierarchy for a particular architecture must be present. Hence,
OMR developers had to provide a way for the language-runtime
developer to extend from a single class, which is the most specific
class of the target architecture. They created a new class called
connector for each existing extensible class hierarchy. For example,
CodeGenerator has a corresponding CodeGeneratorConnector class;
another extensible class hierarchy in compiler called OMRMachine
has an OMRMachineConnector, and so on. The connector acts as a
liaison between the class hierarchy it is representing and external
classes that aim to extend or use this hierarchy. For example, if
CodeGenerator needs to access a function from OMRMachine, it
will use OMRMachineConnector instead of OMRMachine.

We use CodeGenerator to explain how connectors bridge
the gap between the correct most-derived class of the exten-
sible class hierarchy and other OMR classes. Every time a
CodeGenerator class along the extensible class hierarchy is de-
clared, a typedef from that class to CodeGeneratorConnector
is created as shown in Listing 1. Note how the typedef has an
#ifdef guard similar to traditional #include guards. Since all
classes along the same extensible class hierarchy will have the
typedef statement, the guard ensures that only one typedef
is defined at a time. The general goal is to ensure that when
we compile for X86/1386, the only compiled typedef state-
ment is the one that connects OMR: : X86: :1386: : CodeGenerator
to OMR::CodeGeneratorConnector, whereas if we compile for
ARM architecture, the compiled typedef is the one connect-
ing the OMR: : ARM: : CodeGenerator to the OMR: : CodeGenerator-
Connector. Looking at the big picture, OMRCodeGenerator-
Connector is connected by a typedef to each class along the ex-
tensible class hierarchy in each architecture as shown in Figure 1b.
Hence, as long as there is a way to guide the compiler to detect the
typedef in the most derived class first, CodeGeneratorConnector
will represent the correct most-specialized class in that architecture.
The order in which files get compiled can be controlled via the
include paths passed to the compiler; more on this in Section 4.5.

Samer AL MasriT, Nazim Uddin Bhuiyanf, Sarah NadiT, Matthew Gaudetjr

Now that the right class to extend from is identified, language
developers can create their own customizations by extending the
connector class as shown in Figure 1b. To provide a generic way
to always use architecture and language extensions that are only
determined at compile time, OMR developers created a names-
pace TR, short for Testarossa, that contains the final implemen-
tation of the current combination of language and architecture
extensions, and which will be used by the runtime-environment
components. For example, assume we use OMR for language
lang on an ARM host, and we need to use CodeGenerator, we
would then directly use TR::CodeGenerator since it is guaran-
teed to have all the necessary extensions: OMR: : CodeGenerator,
OMR: : ARM: : CodeGenerator, and lang: : CodeGenerator (the lan-
guage’s adaptation of the CodeGenerator).

4.4 The self() Function

One of the main characteristics of OMR’s variability implemen-
tation is that the most derived class in a given extensible class
hierarchy is always the one that is used for all functionality. Con-
sider the scenario in Figure 2, where class A is the base class
of the class hierarchy (similar to OMR: :CodeGenerator) and C
is the most-specific implementation of the hierarchy (similar to
OMR: :X86: : AMD64: : CodeGenerator). Note that function a() in
class A calls function b(). Based on the desired inheritance behav-
ior in OMR; it is expected that whenever function b () is called, even
if it is from inside class A, the most specific implementation of b(),
which is in class B in this case, is executed. Hence, the following is
the expected output from the code in Figure 2: function a from
class A followed by function b from class B. However, if we
run the program using C++’s default behavior, we get: function
a from class A followed by function b from class A. This
means that A: :b() is executed instead of B: :b(). This is due to the
value of the self-pointer (accessed by this keyword) of C. When we
call a() from an instance of C, the self-pointer now points to class
A, since a() is only found in class A. When we call b() from inside
a(), we are implicitly calling this->b(). Since the self-pointer, at
this point, is pointing to A, it will directly call A: :a().

However, OMR developers want to force the program to start
searching for b() from the bottom of the class hierarchy again. To
solve this problem, OMR developers created a function self () that
always returns a fresh pointer of the target class. Hence, instead of
calling b() from function a(), we call self()->b(). self () will
return a pointer to class C, because it forces the program to look
from the bottom of the hierarchy again to get the most specific
implementation available. Given that the TR namespace contains
most of the concrete classes of the different extensible hierarchies,
self () usually returns a pointer of the concrete class in TR.

OMRChecker Given that the use of self () is a convention created
by OMR developers, silent failures due to missing downcasts when
using this instead of self() can occur. In order to ensure the
conventions are respected, OMR developers created OMRChecker,
a static linter implemented as a Clang [1] plugin that checks for
the use of self () instead of this. The linter checks that concrete
classes in class hierarchies are in the correct namespace (usually
the TR namespace) and self () replaces this in the appropriate
places [20]. OMR_EXTENSIBLE is a code annotation introduced in
OMR. When found before the declaration of a class, OMRChecker
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will check this class and ensure that the above three rules are
applied. OMRChecker can currently check one architecture at a time,
but is mainly used for checking the x86 architecture.

4.5 Include Paths

One last problem when using connectors is how to connect the
right class to the connector class. Going back to the CodeGenerator
class, when we compile for the Power architecture, we actually
compile two CodeGenerator classes, OMR: : CodeGenerator and
OMR: :P: :CodeGenerator, and each of them has a typedef for
OMR: : CodeGeneratorConnector. Hence, the challenge is how to
connect the connector to the most specific CodeGenerator. This is
solved by exploiting the compiler’s prioritization of include paths.
When compiling a class that implements the compiler com-
ponent on the i386 architecture, the following includes are
passed to the preprocessor: -Icompiler/x/i386 -Icompiler/x
-Icompiler. Since the preprocessor searches for files in the order
of the passed includes, it will search for the class in 1386-specific
classes first, then in x86-specific classes, and lastly in the base
classes common for all architectures. For example, CodeGenerator
is found in the i386 directory since a specialized implementation
is present. On the other hand, a class that has a single common
implementation for all architectures will be found in the compiler
main directory. Based on the first file found and processed, the
CodeGeneratorConnector will be associated to a different class.

4.6 Ifdefs

OMR also uses #ifdef directives to implement variability, espe-
cially in the GC component. #ifdef directives can be used to include
or omit blocks of code by passing -D arguments to the preprocessor.
Some of the present macros control architecture-specific function-
ality, such as TR_TARGET_X86, while others are used for debugging,
such as ~-DDEBUG_ARM_LINKAGE. Finally, there are macros used to
select specific features or functionality in the code. For example,
OMR_GC_MODRON_SCAVENGER is an optional feature of the GC com-
ponent. In general, there are many ways the #ifdef directives are
exploited in OMR, from being able to enable certain optimizations
to being able to specify the endianness of the build.

5 CHALLENGES AND TECHNOLOGY GAPS

OMR’s unique combination of #ifdefs, static polymorphism through
include paths, and typdef connectors makes it hard to collectively
reason about the variability of the system. This is in addition to the
natural complexity of C++, such as polymorphism and templates.
This section presents the current technology gaps and challenges
for analyzing variability in OMR, and outlines ways to solve them.

Desired Support

OMRChecker is currently the only reasoning tool developers have.
To run OMRChecker, developers need to set up the appropriate in-
clude paths for a particular architecture and language combination.
They currently mostly run it for x86 and the main OMR project. Ide-
ally, the checker should be able to simultaneously check all possible
variants of OMR and notify the relevant developers about missing
self () checks. Even further, OMRChecker currently only checks
for the correct use of self() and the OMR_EXTENSIBLE attribute.
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class A {
public: A
AQ 13 + void a()
void a() { + void b()
printf("function a from class A\n");

b();
}
void b() {

printf("function b from class A\n"); Extends
¥
: B
class B : public A {
public: + void b()
B(O) {};
void b() {

printf("function b from class B\n");

b Extends
class C : public B {

public:

O c

>

int main() {
C instance;
instance.a();
return 0;

}
Figure 2: Example explaining the need for the self() function

There are many more queries and analyses that OMR developers
can run to support them in the maintenance and evolution of OMR.
For example, understanding if a given method is overridden and on
which configurations can help developers refactor the system to im-
prove modularity. If a method is only used by a particular language
or architecture, then perhaps this method should be moved to a
lower class in the hierarchy. Furthermore, checking if a member
function always resolves to the same class or to different classes in
the supported languages is useful for understanding the system be-
havior. Ideally, such queries and checks can be implemented as part
of OMR’s continuous integration to detect problematic changes.

Providing developers with such support indicates the need for
variability-aware analysis of the system. A variability-aware anal-
ysis framework allows developers to implement different checks
and queries and leave it up to the framework to lift the given anal-
ysis to the whole SPL. Such a framework must be able to handle
C++ code with all its features such as polymorphism, templates,
function overloading, as well as #ifdef's, and variations in include
paths determined by the build system. To the best of our knowl-
edge, there exists no variability-aware analysis framework that can
handle this setup. Existing frameworks are mostly for analyzing
C, cannot handle variability due to different include paths, and are
mostly standalone research-effort tools.

Instead of building a framework from scratch, we suggest us-
ing an existing analysis framework. Ideally, it should be one that
OMR developers and the open-source community are already fa-
miliar with. Since OMRChecker is implemented as a Clang plugin,
and future queries that developers might need can easily be im-
plemented in Clang, we believe that modifying Clang to become
variability-aware is the best way forward. We now discuss three
main challenges involved in creating a variability-aware analysis
tool for OMR, and how we will use Clang to solve them.

Handling of Include Paths
Challenge As discussed in Section 4.5, OMR leverages the com-
piler’s prioritization of include paths to achieve variability. We call
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the include paths that correspond to one platform a set of include
paths. Checking multiple platforms is challenging since the analysis,
and in turn the compiler, needs to execute the same prioritization
process for multiple sets of include paths. Hence, the challenge is to
make Clang search in all the provided include path sets every time
it finds an #include directive. Having nested #include directives
inside header files also adds complexity to the matter.

Suggested Solution Currently, #include directives are handled
by searching for the included file in the include paths, creating a
lexer instance for the corresponding file, and then adding this lexer
to a stack of lexers. Control then goes back to the pre-processor
which will take the top lexer from the stack and lex the tokens
inside. The way Clang handles include paths needs to change. We
will change the searching step so that instead of searching for the
files in one set of include paths, we can search for the file in all the
sets that are provided. In other words, when having 3 platforms,
Clang should be provided with 3 sets of include paths, one for each
platform. While searching for a file, 3 files are expected to be found,
each corresponding to a different platform. Since the 3 files will be
added to the same stack of lexers, we are in the process of designing
a mechanism to separate the lexer instances from each other based
on what platform they belong to. To ensure efficiency over a brute
force mechanism, we will leverage any sharing that occurs. In other
words, #includes that resolve to the same path on all architectures,
ie., common code, should be processed only once. However, to
create a ground truth and a benchmark to compare against, and to
get quick feedback from developers about the analyses they might
want to implement on top of a system that can handle variable
include paths, we are currently implementing a brute force solution
as a first step. We are making changes to the main driver of Clang
to run multiple compiler instances in a single Clang execution, with
each compiler instance having its own set of include paths. Our
next step is to explore the commonalities and exploit sharing.

Handling of #ifdefs

Challenge #ifdefs are another source of variability in OMR.
Although #ifdef directives are not heavily used in the compiler
component, an accurate analysis still needs to consider them. C++
adds more language features over C, which when combined with
#ifdef's increases the complexity of variability-aware analysis.

Suggested Solution While TypeChef [17] or SuperC [15] may be
adapted for C++, we believe that it is more practical to extend these
ideas to Clang to provide a framework that is more popular among
systems developers. We plan to adapt TypeChet’s idea of presence
conditions [17] and integrate it with Clang. Presence conditions are
attributes assigned to tokens if they are to be consumed only if a
certain macro is defined. We plan to change Clang’s code at the
lexing stage to assign a condition to a token if the token is within a
conditional block. To gain efficiency over brute force method, we
will change Clang’s parser to split and join processing as it enters
and exits from conditional blocks similar to TypeChef [17].

Handling of C++ features
Challenge Variations in include paths and macro definitions
can completely alter the structure of classes and templates and
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inheritance hierarchies of derived classes. C++ is a complex pro-
gramming language that requires careful analysis. No existing tools
can currently perform a variability-aware analysis of full C++ code.

Suggested Solution We will leverage Clang’s existing infrastruc-
ture to be able to analyze C++ code. As a first step, we will analyze
programs using limited C++ features, and improve our tool in sev-
eral iterations until it can handle all C++ features.

6 CONCLUSION

We discussed how variability can be implemented using static
polymorphism. Specifically, we presented a practical case study
of Eclipse OMR’s variability implementation using a combination
of extensible classes, include path variation, and #ifdefs. We dis-
cussed how OMR achieves the intended variability and supports
new language extensions. Given the complicated and unique nature
of how variability is implemented in OMR, we also highlighted
the current technology gaps that prevent simultaneous reasoning
about all possible OMR configurations. Such reasoning is important
to allow OMR developers to continue evolving and maintaining the
system. Following existing literature on variability-aware analysis
of C code, we plan to extend Clang to create a variability-aware
analysis framework for C++ code that can handle extensible classes,
include path variation, and #ifdefs. Clang is a free, open-source, and
widely used compiler framework, and many developers use it to
build code-analysis plugins. While Eclipse OMR is our inspiration
for this work, making Clang variability-aware, especially with re-
spect to handling commonly used #ifdefs, means that any existing
Clang plugin can be lifted to analyze a whole SPL written in C++.
Our solution would benefit a wide range of developers, helping
them reason about variability in C++ code.
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