
ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2018 1

A Systematic Evaluation of
Static API-Misuse Detectors

Sven Amann, Hoan Anh Nguyen, Sarah Nadi, Tien N. Nguyen, and Mira Mezini, Members, IEEE

Abstract—Application Programming Interfaces (APIs) often have usage constraints, such as restrictions on call order or call conditions.
API misuses, i.e., violations of these constraints, may lead to software crashes, bugs, and vulnerabilities. Though researchers developed
many API-misuse detectors over the last two decades, recent studies show that API misuses are still prevalent. Therefore, we need to
understand the capabilities and limitations of existing detectors in order to advance the state of the art. In this paper, we present the
first-ever qualitative and quantitative evaluation that compares static API-misuse detectors along the same dimensions, and with original
author validation. To accomplish this, we develop MUC, a classification of API misuses, and MUBENCHPIPE, an automated benchmark
for detector comparison, on top of our misuse dataset, MUBENCH. Our results show that the capabilities of existing detectors vary
greatly and that existing detectors, though capable of detecting misuses, suffer from extremely low precision and recall. A systematic
root-cause analysis reveals that, most importantly, detectors need to go beyond the naive assumption that a deviation from the
most-frequent usage corresponds to a misuse and need to obtain additional usage examples to train their models. We present possible
directions towards more-powerful API-misuse detectors.

Index Terms—API-Misuse Detection, Survey, Misuse Classification, Benchmark, MUBench

F

1 INTRODUCTION

INCORRECT usages of an Application Programming Interface
(API), or API misuses, are violations of (implicit) usage

constraints of the API. An example of a usage constraint is having
to check that hasNext() returns true before calling next() on
an Iterator, in order to avoid a NoSuchElementException at
runtime. Incorrect usage of APIs is a prevalent cause of software
bugs, crashes, and vulnerabilities [1]–[7]. While high-quality
documentation of an API’s usage constraints could help, it is often
insufficient, at least in its current form, to solve the problem [8]. For
example, a recent empirical study shows that Android developers
prefer informal references, such as StackOverflow, over official
API documentation, even though the former promotes many
insecure API usages [9]. We confirm this tendency for a non-
security API as well: Instances of Iterator may not be used
after the underlying collection was modified, otherwise they
throw a ConcurrentModificationException. Even though this
constraint and the consequences of its violation are thoroughly
documented, a review of the top-5% of 2,854 threads about
ConcurrentModificationException on StackOverflow shows
that 57% of them ask for a fix of the above misuse [10].

Ideally, development environments should assist developers in
implementing correct usages and in finding and fixing existing
misuses. In this paper, we focus on tools that identify misuses in

• S. Amann and M. Mezini are with Technische Universität Darmstadt,
Germany.
E-mails: amann@st.informatik.tu-darmstadt.de, mezini@informatik.tu-
darmstadt.de

• H. A. Nguyen is with Iowa State University, Iowa, United States of America.
E-mail: hoan@iastate.edu

• S. Nadi is with University of Alberta, Canada.
E-mail: nadi@ualberta.ca

• T. N. Nguyen is with University of Texas-Dallas, Texas, United States of
America.
E-mail: tien.n.nguyen@utdallas.edu

Manuscript received July 1, 2017; revised January 20, 2018; accepted for
publication March 12, 2018.

a given codebase, specifically, those that automatically infer API-
usage specifications and identify respective violations through static
code analysis. We refer to these tools as static API-misuse detectors.

There have been many attempts to address the problem of API
misuse. Existing static misuse detectors commonly mine usage
patterns, i.e., equivalent API usages that occur frequently, and
report any anomaly with respect to these patterns as potential
misuse [1], [11]–[20]. The approaches differ in how they encode
usages and frequency, as well as in the techniques they apply to
identify patterns and violations thereof. Despite the vast amount of
work on API-misuse detection, API misuses still exist in practice, as
recent studies show [9], [21]. To advance the state of the art in API-
misuse detection, we need to understand how existing approaches
compare to each other, and what their current limitations are.
This would allow researchers to improve API-misuse detectors by
enhancing current strengths and overcoming weaknesses.

In this work, we propose the API-Misuse Classification (MUC)
as a taxonomy for API misuses and a framework to assess the
capabilities of static API-misuse detectors. In order to create
such a taxonomy, we need a diverse sample of API misuses.
In our previous work, we described MUBENCH, a dataset of 90
API misuses that we collected by reviewing over 1200 reports
from existing bug datasets and conducting a developer survey [3].
MUBENCH provided us with the misuse examples needed to create
a taxonomy. To cover the entire problem space of API misuses,
for this paper, we add further misuses to this dataset by looking
at examples from studies on API-usage directives [8], [22]. Using
MUC, we qualitatively compare 12 existing detectors and identify
their shortcomings. For example, we find that only few detectors
detect misuses related to conditions or exception handling. We
confirm this assessment with the detectors’ original authors.

The previous step provides us with a conceptual comparison
of existing detectors. We also want to compare these API-misuse
detectors empirically, by both their precision and recall. This is
a challenging task, due to the different underlying mechanisms

ar
X

iv
:1

71
2.

00
24

2v
3

 [
cs

.S
E

]
 1

3
M

ar
 2

01
8

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2018 2

and representations used by detectors. To enable this empirical
comparison, we build MUBENCHPIPE, the first automated pipeline
to benchmark API-misuse detectors. Our automated benchmark
leverages MUBENCH, and the additional misuses we collect in
this work, and creates an infrastructure on top of it to run the
detectors and compare their results. We perform three experiments
based on 29 real-world projects and 25 hand-crafted examples to
empirically evaluate and compare four state-of-the-art detectors. We
exclude the other eight detectors since two rely on the discontinued
Google Code Search [23], five target C/C++ code, and one targets
Dalvik Bytecode, while our benchmark contains Java misuses.
In Experiment P, we measure the precision of the detectors in a
per-project setup, where they mine patterns and detect violations
in individual projects from MUBENCH. In Experiment RUB, we
determine upper bounds to the recall of the detectors with respect
to the known misuses in MUBENCH. We take the possibility of
insufficient training data out of the equation, by providing the
detectors with crafted examples of correct usages for them to
mine required patterns. Finally, in Experiment R, we measure the
recall of the detectors against both the MUBENCH dataset and
the detectors’ own confirmed findings from Experiment P using a
per-project setup.

Our conceptual analysis shows many previously neglected
aspects of API misuse, such as incorrect exception handling and
redundant calls. Our quantitative results show that misuse detectors
are capable of detecting misuses, when provided with correct
usages for pattern mining. However, they suffer from extremely
low precision and recall in a realistic setting. We identify four
root causes for false negatives and seven root causes for false
positives. Most importantly, to improve precision, detectors need
to go beyond the naive assumption that a deviation from the most-
frequent usage corresponds to a misuse, for example, by building
probabilistic models to reason about the likelihood of usages in
their respective context. To improve recall, detectors need to obtain
more correct usage examples, possibly from different sources,
and to consider program semantics, such as type hierarchies and
implicit dependencies between API usages. These novel insights are
made possible by our automated benchmark. Our empirical results
present a wake-up call, unveiling serious practical limitations of
tools and evaluation strategies from the field. Foremost, detectors
suffer from extremely low recall—which is typically not evaluated.
Moreover, we find that the application of detectors to individual
projects does not seem to give them sufficient data to learn good
models of correct API usage.

In summary, this paper makes the following contributions to
the area of API-misuse detection:
• A taxonomy of API misuses, MUC, which provides a con-

ceptual framework to compare the capabilities of API-misuse
detectors.

• A survey and qualitative assessment of 12 state-of-the-art
misuse detectors, based on MUC.

• A publicly available automated benchmark pipeline for API-
misuse detectors, MUBENCHPIPE, which facilitates systematic
and reproducible evaluations of misuse detectors.

• An empirical comparison of both recall and precision of four
existing misuse detectors using MUBENCHPIPE. Our work is
the first to compare different detectors on both a conceptual
and practical level and, more importantly, the first to measure
the recall of detectors, unveiling their poor performance.

• A systematic analysis of the root causes for low precision and
recall across detectors, to call researchers to action.

Our benchmarking infrastructure is publicly available [24] and
our artifact Web page [10] provides full details on our results.

2 BACKGROUND AND TERMINOLOGY

An API usage (usage, for short) is a piece of code that uses a given
API to accomplish some task. It is a combination of basic program
elements, such as method calls, exception handling, or arithmetic
operations. The combination of such elements in an API usage is
subject to constraints, which depend on the nature of the API. We
call such constraints usage constraints. For example, two methods
may need to be called in a specific order, division may not be used
with a divisor of zero, and a file resource needs to be released
along all execution paths. When a usage violates one or more such
constraints, we call it a misuse, otherwise a correct usage.

The detection of API misuses may be approached through static
analyses of source code or binaries and through dynamic analyses,
i.e., runtime monitoring or analysis of runtime data, such as traces
or logs. In either case, the detection requires either specifications of
correct API usage to find violations of or specifications of misuses
to find instances of. Such specifications may be crafted manually
by experts or inferred automatically by algorithms. Automatic
specification inference (or mining) may, again, be approached
both statically, e.g., based on code samples or documentation, and
dynamically, e.g., based on traces or logs.

Since manually crafting and maintaining specifications is
costly, in this work, we focus on automated detectors. We call
such tools API-misuse detectors. In the literature, we find static
misuse detectors, which statically mine specifications and detect
misuses through static analysis, e.g., [1], [13], [15]; dynamic
misuse detectors, which dynamically mine specifications and
detect misuses through dynamic analysis, e.g., [25], [26]; and
hybrid misuse detectors, which, for example, combine dynamic
specification mining with static detection [27]. In this work, we
focus on static API-misuse detectors.

Static API-misuse detection is often achieved through detecting
deviant code [1], [11]–[20], [28]. The key idea is that mistakes
violate constraints that the code should adhere to and that, given
sufficiently many examples of correct usage, such violations appear
as anomalies. We call a usage that appears frequently in programs
a pattern. The identification of mistakes through the detection of
deviant code assumes that patterns correspond to correct usages
(specifications) and anomalies with respect to these patterns are,
consequently, misuses. Such an approach can detect mistakes in
the usage of popular libraries [1], [11], [13], [15], [19], [28].

In our previous work [3], we collected a dataset of Java API
misuses by reviewing bug reports of 21 real-world projects and
surveying developers about API misuses. We call this dataset
MUBENCH. It contains 90 misuses, 73 misuses from the real-world
projects and 17 from the survey (see Table 1, Row 1). For each real-
world misuse, the dataset identifies the project where the misuse
is, the project version that contains the misuse, and the commit
that fixed the misuse. For the other misuses, MUBENCH provides
hand-crafted misuse examples and their fixes.

3 THE API-MISUSE CLASSIFICATION (MUC)
In this section, we introduce the API-Misuse Classification (MUC),
our taxonomy for API misuses. We derive MUC from the misuse
examples in the MUBENCH dataset. In Section 4, we use MUC
to qualitatively compare the capabilities of existing API-misuse

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2018 3

Table 1: Datasets used throughout this paper, with the number of
hand-crafted misuses (#HM), the number of real-world projects
(#P), project versions (#PV), and misuses (#RM), and the total
number of misuses (#M). “n/a” denotes that the number is not
relevant for the use of the dataset.

Dataset #HM #P #PV #RM #M

1 Original MUBENCH [3] 17 21 55 73 90
2 Extended MUBENCH 27 21 55 73 100
3 Experiment P n/a 5 5 n/a n/a
4 Experiment RUB 25 13 29 39 64
5 Experiment R 0 13 29 53 53

detectors. In Section 7, we use MUC to define our expectations
on the detectors’ performance. Before presenting the classification
itself, we briefly discuss existing related classifications to motivate
the need for MUC.

3.1 Motivation for MUC

IEEE has a standard for classifying software defects [29], which
served as the basis for IBM’s ORTHOGONAL DEFECT CLASSIFI-
CATION (ODC) [30]. The ODC uses the defect type as one of
the aspects from which to classify defects. The defect type is
composed of a conceptual program element, such as a function,
check, assignment, documentation, or algorithm, and a violation
type, i.e., either missing or incorrect. More recently, Beller et
al. [31] presented the GENERAL DEFECT CLASSIFICATION (GCD),
a remote ODC-descendant, tailored to compare the capabilities
of automated static-analysis tools. Both classifications capture the
entire domain of all types of software defects. To compare the
capabilities of API-misuse detectors, we need a more fine-grained
differentiation of a subset of the categories in both of them.

Past work presented empirical studies and taxonomies of
API-usage directives [8], [22]. Many of these directives can be
thought of as usage constraints in our terminology and their
violations, consequently, as misuses. Other directives, however,
do not formulate constraints. Examples are directives that explicitly
allow null to be passed as a parameter and directives that
inform about alternative ways to achieve a behaviour (possibly
with different trade-offs). Therefore, we cannot directly convert a
taxonomy of usage directives into a taxonomy of misuses. Instead,
to consider the directives that can be viewed as usage constraints,
we extend MUBENCH [3] by hand-crafted examples of misuses
violating them, which we derive from examples in the studies. This
gives us 10 additional misuses, resulting in a total of 100 misuses
that we use for MUC and our experiments (see Table 1, Row 2).
For simplicity, we subsequently refer to this extended dataset as
MUBENCH.

3.2 The Classification

We developed MUC using a variation of Grounded Theory [32]:
Following our notion of API misuses as API usages with one or
more violations of usage constraints, the first author of this work
went through all the misuses in MUBENCH and came up with
labels for the characteristics of the respective violations, until each
misuse was tagged with at least on label. Subsequently, all authors
iteratively revisited the labelled misuses to unify semantically
equivalent labels and group related labels, until we had a consistent
taxonomy. In the end, we had two dimensions whose intersection
describes all violations in MUBENCH: the type of the involved
API-usage element and the type of the violation. Consequently, we

Table 2: The Misuse Classification (MUC), with the number of
misuses with a particular violation in MUBENCH.

Violation Type

API-Usage Element Missing Redundant

Method Call 30 13
Condition 48 6
null Check 25 3
Value or State 21 2
Synchronization 1 1
Context 1 1

Iteration 1 1
Exception Handling 10 1

define a violation as a pair of a violation type and an API-usage
element.

An API-usage element is a program element that appears in
API usages. The following elements are involved in the misuses
in MUBENCH: method calls, conditions, iterations, and exception
handling. Note that we consider primitive operators, such as arith-
metic operators, as methods. For conditions, we further distinguish
null checks, value or state conditions, synchronization conditions,
and context conditions, because of their distinct properties.

The violation type describes how a usage violates a given usage
constraint with respect to a given usage element. In MUBENCH,
we find two violation types: missing and redundant. Violations of
the missing type come from constraints that mandate the presence
of a usage element. They generally cause program errors. An
example of such a violation is a “missing method call.” Violations
of the redundant type come from constraints that mandate the
absence of a usage element or declare the presence of a usage
element unnecessary. Note that in either case the repetition of an
element may have undesired effects, such as errors or decreased
performance. An example of such a redundant violation is a
“redundant method call.”

Table 2 shows a summary of MUC. The numbers in the cells
show how many misuses in MUBENCH have a respective violation.
Note that a single misuse may have multiple violations; thus, the
individual cells in the table sum up to more than 100. The table
shows that missing method calls, null checks, and value or state
conditions are the most prevalent violations. Redundant calls and
missing exception handling are less frequent, but still prevalent,
while we have only few examples of the other violations.

We now discuss the different violation categories shown in
Table 2, grouped by the API-usage element involved.

Method Calls
Method calls are the most prominent elements of API usages, as
they are the primary means of communication between client code
and the API.

One violation category is missing method calls, which occur
if a usage does not call a certain method that is mandated by
the API usage constraints. For example, if a usage does not call
validate() on a JFrame after adding elements to it, which is
required for the change to become visible.

The other case is redundant method calls, which occur if a
usage calls a certain method that is restricted by the API usage
constraints. For example, if a usage calls remove() on a list that
is currently being iterated over, which causes an exception in the
subsequent iteration.

Conditions
Client code often needs to ensure conditions for valid communica-
tion to an API, in order to adhere to the API’s usage constraints.

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2018 4

There are often alternative ways to ensure such conditions. For
example, to ensure that a collection is not empty one may check
isEmpty(), check its size(), or add an element to it. Note that
checks, in particular, are also a means for the client code to vary
usages depending on program inputs.

One violation category is missing conditions, which occur if
a usage does not ensure certain conditions that are mandated by
the API usage constraints. One case is missing null checks, e.g., if
a usage fails to ensure that a receiver or a parameter of a call is
not null. Another case is missing value or state conditions, e.g.,
if a usage fails to ensure that a Map contains a certain key before
using the key to access the Map. In multi-threaded environments,
missing synchronization conditions may occur, e.g., if a usage
does not obtain a lock before updating a HashMap that is accessed
from multiple threads [22]. Finally, missing context conditions may
also occur, e.g., if a usage fails to ensure that GUI components in
SWING are updated on the Event Dispatching Thread (EDT) [8].

The other case is redundant conditions, where a condition
prevents a necessary part of a usage, e.g., a method call, from being
executed along certain execution paths or is simply redundant.
One case is redundant null checks, e.g., if the usage checks
nullness only after a method has been invoked on the respective
object. Another case is redundant value or state conditions, e.g.,
if the usage checks isEmpty on a collection that’s guaranteed
to contain an element. In multi-thread environments, redundant
synchronization conditions may occur, e.g., if the usage requests
a lock that it already holds, which may cause a deadlock. Finally,
redundant context conditions may also occur, e.g., if a JUNIT

assertion is executed on another thread, where its failing cannot be
captured by the JUNIT framework.

Iteration
Iteration is another means of interacting with APIs, used, in
particular, with collections and IO streams. It takes the form of
loops and recursive methods. Note that respective usage constraints
are about (not) repeating (part of) a usage, rather than about the
condition that controls the execution.

One violation category is missing iterations, which occur if a
usage does not repeatedly check a condition that the API usage
constraints mandate must be checked again after executing part
of the usage. For example, the Java documentation states that a
call to wait() on an object should always happen in a loop that
checks the condition the code waits for, because wait() could
return before the condition is satisfied, in which case the usage
should continue to wait.

The other case is redundant iterations, which occur if part of
a usage is reiterated that the API usage constraints mandate may
be executed not more than once or that is simply redundant. For
example, a Cipher instance might be reused in a loop to encrypt
a collection of values, but its initialization through calling init()

must happen exactly once, i.e., before the loop. Note that in this
situation, the required call is present in the respective code exactly
once, as required, but its inclusion in an iteration causes a violation.

Exception Handling
Exceptions are a way for APIs to communicate errors to client code.
The handling of different errors often depends on the specific API.

One violation category is missing exception handling, which
occurs if a usage does not take actions to recover from a possible
error, as mandated by the API usage constraints. For example, when
initializing a Cipher with an externally provided cryptographic

key, one should handle InvalidKeyException. Another example
is resources that need to be closed after use, also in case of an
exception. Such guarantees are often implemented by a finally

block, but also using the try-with-resources construct or even
respective handling in multiple catch blocks.

The other case is redundant exception handling, which occurs if
a usage intercepts exceptions that should not be caught or handled
explicitly. For example, catching Throwable when executing a com-
mand in an application might suppress a CancellationException,
preventing the user from cancelling the execution.

4 CONCEPTUAL CLASSIFICATION OF EXISTING
MISUSE DETECTORS

To advance the state of the art of API-misuse detection, we need to
understand the capabilities and short-comings of existing misuse
detectors. To identify detectors, we started from the publications
about API-misuse detection listed in a survey of automated API-
property inference techniques by Robillard et al. [33]. For each
publication, we looked at all publications they refer to as related
work and all publication that cite them, according to the ACM
Digital Library or the IEEE Xplore Digital Library. We recursively
repeated this process, until we found no new detectors.

We use MUC to guide the comparison. We provide a conceptual
classification of the capabilities of each detector with respect to
MUC, summarized in Table 3. We use the published description
and results of each detector to identify which of MUC categories
they can, conceptually, detect. To reduce subjectivity, we confirmed
our capability assessment and the detector descriptions with the
respective authors, except for PR-MINER and COLIBRI/ML, whose
authors did not respond. We also describe the strategies used to
evaluate each detector and summarize those in Table 4.

PR-MINER is a misuse detector for C [11]. It encodes usages
as the set of all function names called within the same function
and then employs frequent-itemset mining to find patterns with a
minimum support of 15 usages. Violations here are strict subsets
of a pattern that occur at least ten times less frequently than
the pattern. To prune false positives, PR-MINER applies inter-
procedural analysis, i.e., for each occurrence of a violation, it
checks whether the missing call occurs within a called method.
This analysis follows the call path for up to 3 levels. The reported
violations are ranked by the respective pattern’s support. PR-MINER

focuses on detecting missing method-calls. The evaluation applied
PR-MINER to three target projects individually, thereby finding
violations of project-specific patterns. The detector reported 1,601
findings (1,447, 147, and 7 on the individual projects). The authors
reviewed the top-60 violations reported across all projects and
found 18.1% true positives (26.7%, 10.0%, and 14.3% on the
individual projects).

CHRONICLER is a misuse detector for C [34]. It mines frequent
call-precedence relations from an inter-procedural control-flow
graph. A relation is considered frequent, if it holds on at least 80%
of all execution paths. Paths where such relations do not hold are
reported as violations. CHRONICLER detects missing method calls.
Since loops are unrolled exactly once, it cannot detect missing
iterations. The evaluation applied CHRONICLER to five projects,
thereby finding violations of project-specific patterns. The authors
compared the identified protocols with the documented protocols
for one API and discussed a few examples of actual bugs found by
their tool.

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2018 5

Table 3: Capabilities of Surveyed API-Misuse Detectors.
denotes the capability to detect a violation. G# denotes the

capability to detect a violation under special conditions. # denotes
the inability to detect a violation.

Method Calls Conditions Ex. Handl. Iteration

Misuses Detector M
is

si
ng

R
ed

un
da

nt

M
is

si
ng

n
u
l
l

M
is

si
ng

V
al

./S
ta

te

M
is

si
ng

Sy
nc

.

M
is

si
ng

C
on

te
xt

R
ed

un
da

nt

M
is

si
ng

R
ed

un
da

nt

M
is

si
ng

R
ed

un
da

nt

PR-MINER [11] # # # # # # # # # #
CHRONICLER [34] # # # # # # # # # #
COLIBRI/ML [12] # # # # # # # # # #
JADET [13] # # # # # # # # G# #
RGJ07 [14] G# # # # # # # # #
ALATTIN [18] G# # G# # # # # # # #
AX09 [16] G# # G# G# # # # # # #
CAR-MINER [17] G# # # # # # # # # #
GROUMINER [15] # G# G# # # # # # G# #
DMMC [36] # # # # # # # # # #
TIKANGA [19] # # # # # # # # G# #
DROIDASSIST [20] # # # # # # # # #

Table 4: Summary of Empirical Evaluations of Surveyed API-
Misuse Detectors. For the evaluation setup, IP denotes that detectors
mine on the individual target projects and CP that they mine cross-
project.

of Target Eval. # of Reviewed
Detector Projects Setup Findings Precision (Range)

PR-MINER [11] 3 IP Top 60 18.1% (10-27%)
CHRONICLER [34] 5 IP example-based
COLIBRI/ML [12] 5 IP example-based
JADET [13] 5 IP Top 10/project 6.5% (0-13%)
JADET [37] 20 CP Top 25% (50) 8.0% (0-100%)
RGJ07 [14] 1 IP example-based
ALATTIN [18] 6 CP Top 10/project 29.5% (13-100%)
AX09 [16] 3 IP All (292) 90.4% (50-94%)
CAR-MINER [17] 5 CP Top 10/project 60.1% (41-82%)
GROUMINER [15] 9 IP Top 10/project 5.4% (0-8%)
DMMC [36] 1 IP All (19) 73.7%
DMMC [1] 3 IP Top 30 56.7%
TIKANGA [19] 6 IP Top 25% (121) 9.9% (0-33%)
DROIDASSIST [20] not evaluated

COLIBRI/ML is another misuse detector for C [12]. It re-
implements PR-MINER using Formal Concept Analysis [35] to
strengthen the theoretical foundation of the approach. Consequently,
its capabilities are the same as PR-MINER’s. The evaluation applied
COLIBRI/ML to five target projects, thereby finding violations
of project-specific patterns. While some detected violations are
presented in the paper, no statistics on the quality of the detector’s
findings are reported.

JADET is a misuse detector for Java [13]. It uses COLIB-
RI/ML [12], but instead of only method names, it encodes method-
call order and call receivers in usages. It builds a directed graph
whose nodes represent method calls on a given object and whose
edges represent control flows. From this graph, it derives a pair
of calls for each call-order relationship. The sets of these pairs
form the input to the mining, which identifies patterns, i.e., sets
of pairs, with a minimum support of 20. A violation may miss
at most 2 properties of the violated pattern and needs to occur at
least ten times less frequently than the pattern. Detected violations
are ranked by u× s/v, where s is the violated pattern’s support, v
is the number of violations of the pattern, and u is a uniqueness
factor of the pattern. JADET detects missing method calls. It may
detect missing loops as a missing call-order relation from a method
call in the loop header to itself. The evaluation applied JADET to
five target projects, thereby finding violations of project-specific
patterns. The authors reviewed the top-10 violations reported per
project and found 6.5% true positives (0%, 0%, 7.7%, 10.5%, and
13.3% on the individual projects). Other findings were classified as

code smells (6.5%) or hints (35.0%).
In a subsequent study, JADET was applied in a cross-project

setting where it was applied to 6,097 projects at once, using a
minimum pattern support of 200 [37]. The authors reviewed the
top-25% findings from a random sample of 20 projects, a total
of 50 findings, and found 8% true positives. Other findings were
classified as code smells (14.0%).

RGJ07 is a misuse detector for C [14]. It encodes usages as
sets of properties for each variable. Properties are comparisons to
literals, argument positions in function calls, and assignments. For
each call, it creates a group of the property sets of the call’s
arguments. To all groups for a particular function, it applies
sequence mining to learn common sequences of control-flow
properties and frequent-itemset mining to identify all common sets
of all other property types. Subsequently, it identifies violations of
the common property sequences and sets. RGJ07 is designed to
detect missing conditions. From the properties it encodes, it can
detect missing null checks and missing value or state conditions.
Since patterns contain preceding calls on arguments, it may also
detect missing calls, if the respective call shares an argument with
another call in the pattern. The evaluation applied RGJ07 to a single
project, thereby finding violations of project-specific patterns. The
authors discussed several examples of actual bugs their approach
detects, but reported no statistics on the detection performance.

ALATTIN is a misuse detector for Java [18], specialized in
alternative patterns for condition checks. For each target method m,
it queries a code-search engine to find example usages. From each
example, it extracts a set of rules about pre- and post-condition
checks on the receiver, the arguments, and the return value of m,
e.g., “boolean check on return of Iterator.hasNext before
Iterator.next.” It then applies frequent-itemset mining on these
rules to obtain patterns with a minimum support of 40%. For each
such pattern, it extracts the subset of all groups that do not adhere
to the pattern and repeats mining on that subset to obtain infrequent
patterns with a minimum support of 20%. Finally, it combines all
frequent and infrequent patterns for the same method by disjunction.
An analyzed method has a violation if the set of rules that hold in
it is not a superset of any of the alternative patterns. Violations are
ranked by the support of the respective pattern. ALATTIN, therefore,
detects missing null-checks and missing value or state conditions
that are ensured by checks and do not involve literals. It may also
detect missing method-calls that occur in checks. The evaluation
applied ALATTIN to six projects. Since it queries code-search
engines for usage examples, it detects violations of cross-project
patterns. The authors manually reviewed all violations of the top-10
patterns per project, a total of 532 findings, and confirmed that
29.5% identify missing condition checks (12.5%, 26.2%, 28.1%,
32.7%, 52.6%, and 100% for the individual projects). Considering
frequent alternative patterns reduced false positives by 15.2% on
average, which increased precision to 33.3%. Considering both
frequent and infrequent alternatives even reduced false positives by
28.1% on average, leading to a precision of 37.8%, but introduced
1.5% additional false negatives, because misuses that occur multiple
times are mistaken for infrequent patterns.

AX09 is a misuse detector for C [16], specialized in detecting
wrong error handling, realized through returning (and checking
for) error codes. It distinguishes normal paths, i.e., execution paths
from the beginning of the main function to its end, and error
paths, i.e., paths from the beginning of the main function to an
exit or return statement in an error-handling block. AX09 uses

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2018 6

push-down model checking to generate such paths as sequences
of method calls and applies frequent-subsequence mining to find
patterns with a minimum support of 80% (but at least 5 usages). It
then uses push-down model checking to verify adherence to these
patterns and identify respective violations. Finally, it filters false
positives by tracking variable values and excluding error cases that
cannot occur. It detects missing error-handling as well as missing
method calls among error-handling functions. Since it identifies
error-handling blocks through a predefined set of checks, it also
detects missing null-checks and missing value or state conditions
in the case of missing error-handling blocks. The evaluation applied
AX09 to three projects individually, thereby finding violations of
project-specific patterns. The authors manually reviewed all 292
findings and confirmed 90.4% true positives (50.0%, 90.3%, and
93.5% on the individual projects).

CAR-MINER is a misuse detector for C++ and Java [17],
also specialized in detecting wrong error handling. For each
analyzed method m in a given code corpus, it queries a code-
search engine to find example usages. From the examples, it builds
an Exception Flow Graph (EFG), i.e., a control-flow graph with
additional edges for exceptional flow. From the EFG, it generates
normal call sequences that lead to the currently analyzed call and
exception call sequences that lead from the call along exceptional
edges. Subsequently, it mines association rules between normal
sequences and exception sequences, with a minimum support
of 40%. To detect violations, CAR-MINER extracts the normal
call sequence and the exception call sequence for the target
method call. It then uses the learned association rules to determine
the expected exception handling and reports a violation if the
actual sequence does not include it. CAR-MINER detects missing
exception-handling as well as missing method calls among error-
handling functions. The evaluation applied CAR-MINER to five
projects. Since it queries code-search engines for usage examples,
it detects violations of cross-project patterns. The authors manually
reviewed all violations of the top-10 association rules for each
project, a total of 264 violations, and confirmed that 60.1% identify
wrong error handling (41.1%, 54.5%, 68.2%, 68.4%, and 82.3%
on the individual projects). Other findings were classified as hints
(3.0%).

GROUMINER is a misuse detector for Java [15]. It creates
a graph-based object-usage representation (GROUM) for each
target method. A GROUM is a directed acyclic graph whose nodes
represent method calls, branchings, and loops and whose edges
encode control and data flows. GROUMINER performs frequent-
subgraph mining on sets of such graphs to detect recurring usage
patterns with a minimum support of 6. When at least 90% of all
occurrences of a sub-pattern can be extended to a larger pattern, but
some cannot, those rare inextensible occurrences are considered
as violations. Note that such violations have always exactly one
node less than a pattern. The detection of patterns and violations
happens at the same time. Violations are ranked by their rareness,
i.e., the support of the pattern over the support of the violation.
GROUMINER detects missing method calls. It also detects missing
conditions and loops at the granularity of a missing branching
or loop node. However, it cannot consider the actual condition.
The evaluation applied GROUMINER to nine projects individually,
thereby finding violations of project-specific patterns. The authors
reviewed the top-10 violations per project, a total of 184 findings,
and found 5.4% true positives (three times 0%, five times 6.7%,
and once 7.8% on the individual projects). Other findings were

classified as code smells (7.6%) or hints (6.0%).
DMMC is a misuse detector for Java [36], specialized in

missing method calls. The detection is based on type usages, i.e.,
sets of methods called on an instance of a given type in a given
method. Two usages are exactly similar if their respective sets
match and are almost similar if one of them contains exactly one
additional method. The detection is based on the assumption that
violations should have only few exactly-similar usages, but many
almost-similar ones. The likelihood of a usage x being a violation is
expressed in the strangeness score = 1−|E(x)|/(|E(x)|+ |A(X)|),
where E(x) is the set of usages that are exactly similar to x and
A(x) the set of those that are almost similar. A usage is considered
a violation if its strangeness score is above 0.97. Violations are
ranked by the strangeness score. DMMC detects misuses with
exactly one missing method-call. The evaluation applied DMMC
to a single project, thereby finding project-specific violations. The
authors manually reviewed all findings with a strangeness score
above 97%, a total of 19 findings, and confirmed 73.7% as true
positives. The evaluation was repeated later [1], applying DMMC
to three projects individually, thereby finding project-specific
violations for a predefined set of APIs. The authors report that they
manually reviewed approximately 30 findings, and confirmed 17
(≈ 56.7%) as true positives. Others were classified as workarounds
for bugs inside a used API.

TIKANGA is a misuse detector for Java [19] that builds on JADET.
It extends the simple call-order properties to general Computation
Tree Logic formulae on object usages. Specifically, it uses formulae
that require a certain call to occur, formulae that require two calls
in order, and formulae that require a certain call to happen after
another. It uses model checking to determine all those formulae with
a minimum support of 20 in the codebase. Violations are ranked by
the conviction measure [38] of the association between the set of
present formulae and the set of missing formulae in the violating
usage. It then applies Formal Concept Analysis [35] to obtain
patterns and violations at the same time. TIKANGA’s capabilities
are the same as JADET’s. The evaluation applied TIKANGA to six
projects individually, finding violations of project-specific patterns.
The authors manually reviewed the top-25% of findings per project,
a total of 121 findings, and confirmed 9.9% as true positives (0%,
0%, 8.3%, 20.0%, 21.4%, and 33.3% on the individual projects).
Other findings were classified as code smells (29.8%).

DROIDASSIST is a detector for Android Java Bytecode [20]. It
generates method-call sequences from source code and learns a
Hidden Markov Model from them, to compute the likelihood of a
particular call sequence. If the likelihood is too small, the sequence
is considered a violation. DROIDASSIST then explores different
modifications of the sequence (adding, replacing, and removing
calls) to find a slightly modified, more likely sequence. This allows
it to detect missing and redundant method calls and even to suggest
solutions for them. An evaluation of this mechanism is not provided
in the respective paper.

Summary. All detectors use code (snippets) as training and
verification input. Some require the code in a compiled format,
such as Java Bytecode, while others directly work on source code.
Detectors typically encode usages as sets, sequences, or graphs.
Graph representations seem promising for simultaneously encoding
usage elements, order, and data-flow relations. With the exception
of DROIDASSIST and DMMC, detectors mine patterns through
frequent-itemset/subsequence/subgraph mining, according to their
usage representation. To detect violations, they mine in-extensible

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2018 7

parts of patterns that are themselves observed infrequently. This
implies that they cannot detect redundant elements, since a usage
with such an element is never part of any pattern. The exception is
DROIDASSIST, which might find redundant calls as being unlikely.

Table 3 summarizes the detectors’ capabilities with respect to
MUC. Overall, we find that detectors cover only a small subset of
all API-misuse categories. While all detectors may, to some degree,
identify missing method calls, only four detectors may identify
missing null checks and missing value-or-state conditions, only
three may identify missing iterations, and only two may identify
missing exception handling. None of the detectors targets all of
these categories.

Existing detectors use both absolute and relative minimum
support thresholds to identify patterns. The exceptions are, again,
DROIDASSIST and DMMC, which use probabilistic approaches.
Since many detectors produce a high number of false positives,
they use a variety of ranking strategies. Most of these rely mainly
on the pattern support, but some use different concepts, such as
rareness, strangeness, or conviction. A comparison of different
ranking strategies is not reported in any of the publications.

Table 4 summarizes the empirical evaluations of the surveyed
detectors, as reported in their original papers. Most evaluations
apply detectors to target projects individually. In this setting, the
detectors learn project-specific patterns and identify respective
violations The number of projects ranges from 1 to 20 (average
5.3; median 5). The concrete projects samples are all distinct and
mostly even disjunct.

To assess the detection performance, most authors review the
top-X findings of their detectors, where X is a fixed number or
percentage. They then either present anecdotal evidence of true
positives or measure the precision of detectors. Many evaluations
also present additional categories of findings, such as code smells,
to distinguish false positives from other non-misuse findings that
may still be valuable to developers. The definitions of when a
finding belongs to which category—if provided—differ between
publications, even if they use the same label, e.g., “bug” or “code
smell.” No evaluation considers the recall of the respective detector.

Overall, it appears that the detectors that focus on specific
violations, such as error handling or missing method calls, have
higher precision. However, simply comparing detectors based on
their reported empirical results would be unreliable, since the target
projects, the review sample sizes, and the criteria to assess detector
findings differ between the studies.

5 EXPERIMENTAL SETUP

In Section 4, we conceptually compared detectors’ capabilities.
In this section, we describe the experimental setup we use to
empirically compare their capabilities. We design three experiments,
to measure both the detectors’ precision and recall. We build these
experiments on MUBENCH as a ground-truth dataset. This enables
us to compare all detectors on the same target projects and with
respect to the same known misuses.
Subject Detectors. In this study, we focus on misuse detectors
for Java APIs, because MUBENCH contains examples of Java-
API misuses. Our survey identifies seven such detectors. We
contacted the respective authors and got responses from all of
them. However, we learned that we cannot run CAR-MINER and
ALATTIN, because they both depend on Google Code Search, a
service that is no longer available [23]. We exclude DROIDASSIST,

because its implementation only supports Dalvik Bytecode,1 while
the examples in MUBENCH are general Java projects, which
compile to Java Bytecode. This leaves us with four detectors
JADET, GROUMINER, TIKANGA, and DMMC.
Misuse Dataset. We use MUBENCH, described in Section 2, to
find targets for our evaluations. While GROUMINER works on
source code, JADET, TIKANGA, and DMMC require Java Bytecode
as input. Thus, we can only compare them on project versions for
which we have both source code and Bytecode. Since Bytecode
is not readily available for most project versions in the dataset,
we resort to compiling them ourselves by adding necessary build
files and fixing any dependency issues. We exclude 26 project
versions (47%) with compilation errors that we could not fix. In the
end, we have 29 compilable project versions and 25 hand-crafted
examples, with 64 misuses in total, for our experiments. Note that
some project versions contain multiple misuses. The last three rows
in Table 1 describe the subsets of this dataset that we use in the
individual experiments. We publish the dataset [24] for others to
use in future studies.

5.1 Experiment P
We design Experiment P to assess the precision of detectors.
Motivation. Past studies show that developers rarely use analysis
tools that produce many false positives [39]–[41]. Therefore, for a
detector to be adopted in practice, it needs a high precision.
Setup. To measure precision, we follow the most-common experi-
mental setup we found in the literature (cf. Table 4). First, we run
detectors on individual project versions. In this setting, they mine
patterns and detect violations on a per-project basis. Second, we
manually validate the top-20 findings per detector on each version,
as determined by the respective detector’s ranking strategies. We
limit the number of findings, because it seems likely that developers
would only consider a fixed number of findings, rather than all of a
potentially very large number of findings. Hence, the precision in a
detector’s top findings is likely crucial for tool adoption. Also, we
need to limit the effort of reviewing findings of multiple detectors
on each project version.
Dataset. Since manually reviewing findings of all detectors on all
project versions is infeasible, we sample five project versions. To
ensure a fair selection of projects, we first run all detectors on all
project versions. For practical reasons, we timeout each detector
on an individual project version after two hours. The run statistics
are summarized in Table 5.

JADET and TIKANGA fail on one project version and DMMC
fails on four project versions, since the Bytecode contains con-
structs that the detectors’ respective Bytecode toolkits do not
support. GROUMINER times out on eight project versions and
produces an error on one other version. We exclude any project
version where a detector fails.

For the remaining 15 versions, we observe that the total number
of findings correlates across detectors. Table 6 shows that the
pairwise correlation (Pearson’s r) is strong (≥ 0.75) or medium (≥
0.5) for all pairs of detectors, except for JADET and GROUMINER

(r = 0.49). This means that either all detectors report a relatively
large or a relatively small number of findings on any given project
version. We hypothesise that the total number of findings might
be related to the detectors’ ability to precisely identify misuses

1. A bytecode format developed by Google, which is optimized for the char-
acteristics of mobile operating systems (especially for the Android platform).

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2018 8

Table 5: Number of Findings per Detector on All Compilable Project Versions in MUBENCH. Experiment P includes the two projects
with the highest number of findings, the two projects with the lowest number of findings, and one randomly selected project.

Number of Findings Sample
CriterionProject Version JADET GROUMINER TIKANGA DMMC Norm. Avg.

APACHE COMMONS LANG 587 0 28 0 157 0.06
APACHE COMMONS MATH 998 17 error 17 686 0.20
ADEMPIERE 1312 0 27 0 116 0.05
ALIBABA DUID e10f28 17 timeout (2h) 5 520 0.13
CLOSURE 114 113 101 24 1233 0.49
CLOSURE 319 176 126 45 1945 0.74 highest
CLOSURE 884 71 167 33 1966 0.63
APACHE HTTPCLIENT 302 0 12 0 114 0.03
APACHE HTTPCLIENT 444 0 15 0 110 0.03
APACHE HTTPCLIENT 452 0 12 0 113 0.03
ITEXT 5091 17 198 55 1138 0.55 highest
APACHE JACKRABBIT 1601 12 186 22 error 0.41
APACHE JACKRABBIT 1678 0 15 0 error 0.03
APACHE JACKRABBIT 1694 13 186 22 error 0.41
APACHE JACKRABBIT 1750 10 timeout (2h) 8 434 0.12
JFREECHART 103 167 timeout (2h) 88 673 0.69
JFREECHART 164 168 timeout (2h) 90 664 0.69
JFREECHART 881 194 timeout (2h) 93 745 0.76
JFREECHART 1025 194 timeout (2h) 93 747 0.76
JFREECHART 2183 190 timeout (2h) 100 906 0.81
JFREECHART 2266 195 timeout (2h) 102 913 0.82
JMRTD 51 0 11 0 29 0.02 lowest
JMRTD 67 0 10 0 35 0.02
JODA-TIME 1231 0 0 0 1 0.00 lowest
APACHE LUCENE 207 0 140 0 182 0.20
APACHE LUCENE 754 0 54 0 265 0.10
APACHE LUCENE 1251 2 62 0 error 0.11
APACHE LUCENE 1918 2 88 4 583 0.20 random
MOZILLA RHINO 286251 error 55 error 257 0.20

Table 6: Correction of the Number of Findings per Project Version
For All Pairs of Detectors (Pearson’s r). Strong correlation (r ≥
0.75) in bold. Medium correlation (r ≥ 0.5) in italic.

JADET GROUMINER DMMC TIKANGA

JADET 1.00
GROUMINER 0.49 1.00
DMMC 0.85 0.78 1.00
TIKANGA 0.70 0.82 0.88 1.00

in a given project version. Therefore, we sample project versions
according to the average normalized number of findings across
all detector. We normalize the number of findings per detector
on all project versions by the maximum number of findings of
that detector on any project version. We sample the two projects
with the highest average normalized number of findings across
all detectors (CLOSURE [42] v319 and ITEXT [43] v5091) and
the two projects with the lowest average normalized number of
findings across all detectors (JMRTD [44] v51 and JODA-TIME [45]
v1231). Additionally, we randomly select one more project version
(APACHE LUCENE [46] v1918) from the remaining projects, to
cover the middle ground. Note that we select at most one version
from each distinct project, because different versions of the same
project may share a lot of code, such that detectors are likely
to perform similarly on them. This dataset for Experiment P is
summarized in Row 3 of Table 1.

Metrics. We calculate the precision of the detector, i.e., the ratio
between the number of true positives over the number of findings.

Review Process. Two authors independently review each of the
top-20 findings of the sampled project versions and mark it as
a misuse or not. To determine this, they consider the logic and

the documentation in the source code, the API’s documentation,
and its implementation if publicly available. After the review,
any disagreements between the reviewers are discussed until
a consensus is reached. We report Cohen’s Kappa score as a
measure of the reviewers’ agreement. Note that we follow a lenient
reviewing process. For example, assume a usage misses a check if

(iterator.hasNext()) before calling iterator.next(). If the
detector finds that hasNext() is missing, we mark the finding as a
hit, even though this does not explicitly state that the call to next()

should be guarded by a check on the return value of hasNext().
This follows our intuition that such findings may still provide a
developer with a valuable hint about the problem.

5.2 Experiment RUB
We design Experiment RUB to assess the detection capabilities of
our subject detectors, i.e., to measure an upper bound to their recall
under the assumption that they always mine the required pattern.
Motivation. We argue that it is important for developers to know
which misuses a particular tool may or may not find, in order to
decide whether the tool is adequate for their use case and whether
they must take additional measures. Moreover, it is important for
researchers to know which types of misuses existing detectors may
identify, in order to direct future work. Therefore, we measure
detectors’ recall while providing sufficiently many correct usages
that would allow them to mine the required pattern.
Dataset. For this experiment, we use all compilable project versions
from the MUBENCH dataset with the respective known misuses,
as well as the hand-crafted misuse examples. This dataset for
Experiment RUB is summarized in Row 4 of Table 1.

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2018 9

Setup. Recall that all our subject detectors mine patterns, i.e., fre-
quently reoccurring API usages, and assume that these correspond
to correct usages. They use these patterns to identify misuses.
Recall further that each detector has a distinct representation of
usages and patterns and its own mining and detection strategies.
If a detector fails to identify a particular misuse, this may be
due to (1) an inherent limitation of the detector, e.g., because it
cannot represent some usage element such as conditions, or (2) a
lack of examples of respective correct usage for pattern mining,
i.e., a limitation of the training data. With Experiment RUB, we
focus on (1), i.e., we take (2) out of the equation and assess the
detectors’ general ability to identify misuses. To this end, we
provide the detectors with sufficiently many examples of correct
usage corresponding to the misuses in question. This guarantees
that they could mine a respective pattern. If the detector is unable
to identify a misuse in this setting, we know the problem lies with
the detector itself.

We manually create a correct usage for each misuse in the
dataset, using the fixing commits recorded in MUBENCH. For each
misuse, we take the entire code of the method with the misuse after
the fixing commit and remove all code that has no data or control
dependencies to the objects involved in the misuse. We store the
code of this crafted correct usage in our dataset.

In the experiment, we run each detector once for each individual
known misuse in the dataset. In each run, we provide the detector
with the file that contains the known misuse and with 50 copies of
the respective crafted correct usage. We ensure that the detector
considers each copy as a distinct usage. We configure the detectors
to mine patterns with a minimum support of 50, thereby ensuring
that they mine patterns only from the code in the crafted correct
usage. We chose 50 as a threshold, since it is high enough to ensure
that no detector mines patterns from the code in the file with the
misuse.
Metrics. We calculate two numbers for each detector. The first is its
conceptual recall upper bound, which is the fraction of the known
misuses in the dataset that match its capabilities from Table 3.
Note that the conceptual recall upper bound is calculated offline,
without running any experiments. The second is the detector’s
empirical recall upper bound, which is the fraction of misuses a
detector actually finds from all the known misuses in the dataset.
An ideal detector should have an empirical recall upper bound
equal to its conceptual recall upper bound. Otherwise, its practical
capabilities do not match its conceptual capabilities. In such cases,
we investigate the root causes for such mismatches. Note that we
use the term “upper bound,” because neither recall rate reflects the
detectors’ recall in a setting without guarantees on the number of
correct usages for mining.
Review Process. To evaluate the results, we review all potential
hits, i.e., findings from each detector that identify violations
in the same files and methods as known misuses. Two authors
independently review each such potential hit to determine whether
it actually identifies one of the known misuses. If at least one
potential hit identifies a misuse, we count it as a hit. After the
review, any disagreements between the reviewers are discussed
until a consensus is reached. We report Cohen’s Kappa score as a
measure of the reviewers’ agreement. We follow the same lenient
review process as for Experiment P.

5.3 Experiment R
We design Experiment R to assess the recall of detectors.

Motivation. While Experiment RUB gives us an upper bound to
the recall of misuse detectors, we also want to assess their actual
recall where we do not provide them with correct usages ourselves.
Due to the lack of a ground-truth dataset, such an experiment has
not been attempted before in any of the misuse-detection papers
we surveyed.
Dataset. As the ground truth for this experiment, we use all
known misuses from real-world projects in MUBENCH plus the
true positives identified by any of the detectors in Experiment P.
This means that Experiment R not only evaluates recall against
the misuses of MUBENCH, but also practically cross-validates
the detector capabilities against each other. We exclude the hand-
crafted misuse examples from this experiment, since there is no
corresponding code for the detectors to mine patterns from. The
dataset we use for Experiment R is summarized in Row 5 of Table 1.
Setup. We run all detectors on all projects versions individually,
i.e., we use the same per-project setup as for Experiment P.
Metrics. We calculate the recall of the detectors, i.e., the number
of actual hits over the number of known misuses in the dataset.
Review Process. We review all potential hits in the same process
as for Experiment RUB. This gives us the detectors’ recall with
respect to a large number of known misuses from MUBENCH.

6 MUBENCHPIPE

To systematically assess and compare API-misuse detectors, we
built MUBENCHPIPE, a benchmarking pipeline for API-misuse
detectors. MUBENCHPIPE automates large parts of the experimental
setup presented in Section 5 and facilitates the reproduction of our
study. It also enables adding new detectors to the comparison, as
well as benchmarking with different or extended datasets, in the
future. We publish the pipeline [24] for future studies.

6.1 Automation
Following the idea of automated bug-detection benchmarks for
C programs, such as BUGBENCH [47] and BEGBUNCH [48], we
facilitate the benchmarking of multiple detectors on our misuse
dataset with an evaluation pipeline. MUBENCHPIPE automates
many of our evaluation steps, such as retrieval and compilation
of target projects, running detectors, and collecting their findings.
MUBENCHPIPE provides a command-line interface to control these
steps. We subsequently describe the pipeline steps we implemented
to facilitate our evaluation.
Checkout. MUBENCHPIPE uses the recorded commit Id from
MUBENCH to obtain the source code of the respective project
version. It supports SVN and Git repositories, source archives (zip),
as well as a special handling for the hand-crafted examples that
come with MUBENCH.
Compile. For every project version, MUBENCHPIPE first copies
the entire project source code, the individual files containing
known misuses, and the respective crafted correct usages for
Experiment RUB each into a separate folder. It then uses the
respective build configuration from the dataset to compile all Java
sources to Bytecode. After compilation, it copies the entire project
Bytecode, the Bytecode of the individual files containing known
misuses, and the Bytecode of the respective crafted correct usages
each into a separate folder. This way, we may provide the detectors
with the source code or Bytecode of each of these parts individually.
Detect. For each detector, we also built a runner to have a unified
command-line interface for all detectors. For every project version,

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2018 10

MUBENCHPIPE invokes the detector with the paths to the respective
source code and Bytecode. All detectors are invoked with the best
configuration reported in their respective publication. Apart from
adding some accessor methods that allow us to obtain the detectors’
output, all detector implementations were left unchanged.
Validation. To help with the manual review of findings, MUBENCH-
PIPE automatically publishes experiment results to a review
website [10]. For every detector finding, the website shows the
source code it is found in along with any metadata the detector
provides, such as the violated pattern, the properties of the violation,
and the detector’s confidence.

For Experiments RUB and R, MUBENCHPIPE automatically
filters potential hits, by matching findings to known misuses by
file and method name. On the review website, a reviewer sees the
description of the known misuse as well as its fix, along with the
set of potential hits that need to be reviewed. For Experiment P,
MUBENCHPIPE shows all findings of the detector on the review
site.

The review website allows reviewers to save an assessment
and comment for each finding. It also ensures at least two reviews
for each finding, before automatically computing the experiment
statistics, such as precision, recall, and Cohen’s Kappa scores.

6.2 Reproduction, Replication, and Extension

MUBENCHPIPE comes with a Docker image, which allows running
reproducible experiments across platforms, without the need to
ensure a proper environment setup. Its review website comes
with a second Docker image, which allows serving it standalone.
Moreover, it is based on PHP and MySQL, such that it can be
hosted on any off-the-shelf webspace. The review website facilitates
independent reviews, even when researchers work from different
locations, while ensuring review integrity using authentication.
The website may also directly be used as an artifact to publish
review results and experiment statistics. MUBENCHPIPE defines a
simple data schema for misuse examples to facilitate extensions of
MUBENCH. It also provides a convenient Java interface as a Maven
dependency to enable plugging in additional detectors for evalua-
tion on the benchmark. For further details on how to use or extend
MUBENCHPIPE, we refer the readers to our project website [24].

7 RESULTS

We now discuss the results of comparing JADET, GROUMINER,
TIKANGA, and DMMC in our experiments. All reviewing data is
available on our artifact page [10].

7.1 Experiment P

Table 7 shows our precision results, based on reviewing the top-20
findings per detector on each of our five sample projects. The
second column shows the total number of reviewed findings, 230
in total across all detectors. Note that all detectors report less
than 20 findings for some projects. The third column shows the
confirmed misuses after resolving disagreements, and the fourth
column shows the precision with respect to the reviewed findings.
The fifth column shows the Kappa score for the manual reviews,
and the remaining columns show the frequencies of root causes
for false positives. We find that the precision of all detectors is
extremely low. TIKANGA shows the best precision of only 11.4%.
JADET and DMMC follow immediately behind, with a precision

of 10.3% and 9.9%, respectively. GROUMINER reports only false
positives in its top-20 findings.

O1: All detectors have extremely low precision (below 12%). On
average, they report less than 1.5 actual misuses in their top-20
findings.

The Kappa scores indicate high reviewer agreement, which
shows that all detectors produced mostly clear false positives.
The score is a little lower for TIKANGA, because it reported one
confirmed misuse twice, which one of the reviewers first accepted
as an actual hit while the other did not. The score is also lower
for DMMC, because we initially disagreed on several violations
it identifies in Iterator usages that do not check hasNext(), but
the underlying collection’s size.

True Positives
Out of the 230 reported findings we reviewed, we confirm 17
true misuses. DMMC reports 8 misuses of an iterator API where
hasNext() is not checked. JADET reports 4 misuses that access a
collection without checking its size before. Also for collections,
TIKANGA reports 4 misuses with a missing hasNext() and 1
misuse with a missing size check. One misuse is reported by both
TIKANGA and JADET and another by both TIKANGA and DMMC.
Additionally, JADET reports one misuse twice. This leaves a total
of 14 unique misuses, all different from the known misuses in
MUBENCH. Interestingly, all these misuses are missing value or
state conditions, for which the detectors report only missing calls
to methods that should be used in the respective missing checks.
We accept these findings in our lenient review process.

O2: All 14 confirmed misuses in Experiment P are missing value
or state condition checks before accessing the elements of a
collection, either directly or through an iterator.

False Positives
To identify opportunities to improve the precision of misuse
detectors, we systematically investigate the root causes for the
false positives they report. In the following, we discuss these
root causes summarized across all detectors, in the order of their
absolute frequency.
1. Uncommon. Particular usages may violate the patterns that
detectors learn from frequent usages, without violating actual API
usage constraints. Detectors cannot differentiate infrequent from
invalid usage. For example, DMMC and JADET learn that the
methods getKey() and getValue() of MapEntry usually appear
together in code. They both report violations if a call to either
of these methods is missing, or, in case of JADET, if the calls
appear in a different order. However, there is no requirement
by the API to always call both getter methods, let alone in a
specific order. Across the reported violations we analyzed, the
detectors falsely report 42 missing method calls in cases where
one out of a number of getter methods is missing or invoked in
a different order. Another example is that JADET and TIKANGA

learn that methods such as List.add() and Map.put() are usually
invoked in loops and report five missing iterations for respective
invocations outside a loop, which are perfectly fine according to the
API. Approaches such as multi-level patterns [49] or ALATTIN’s
alternative patterns [18] may help to mitigate this problem. Also
note that the four detectors in our experiments all use absolute
frequency thresholds, while some of the detectors from our survey

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2018 11

Table 7: Experiment P: Precision of the Detectors on the Top-20 Findings on 5 Projects and Root Causes for False Positives.

D
et

ec
to

r

R
ev

ie
w

ed
Fi

nd
in

gs

C
on

fir
m

ed
M

is
us

es

Pr
ec

is
io

n

K
ap

pa
Sc

or
e Frequencies of Root Causes for False Positives

Unc
om

mon

Ana
lys

is

Alte
rna

tiv
e

Ins
ide

Dep
en

de
nt

Bug M
ult

ipl
ici

ty

JADET 39 4 10.3% 0.97 21 3 8 0 1 0 2
GROUMINER 66 0 0.0% 0.97 25 22 8 7 2 1 1
DMMC 81 8 9.9% 0.91 9 19 18 19 4 4 0
TIKANGA 44 5 11.4% 0.93 18 7 7 0 7 0 0

Total 230 17 0.94 73 51 41 26 14 5 3

in Section 4 also used relative thresholds. Future work should
investigate how these two alternatives compare.

O3: Particular usages may be uncommon without violating API
constraints. Neglecting this causes 73 (34.3%) of the detectors’
false positives in their top-20 findings. This calls for research
on detecting patterns without setting a hard threshold on oc-
currence frequencies. Meanwhile, relaxing requirements on the
co-occurrence of getter methods might reduce false positives
significantly.

2. Analysis. The detectors use static analysis to determine the facts
that belong to a particular usage. Imprecisions of these analyses
lead to false positives. For example, the detectors mistakenly report
five missing elements in code that uses multiple aliases for the
same object and another 17 in code with nested control statements.
In both cases, the analysis failed to capture all calls belonging
to the same usage. GROUMINER reports two missing method
calls, because it cannot resolve the receiver types in the chained
calls and, therefore, fails to match a call between the pattern
and the usage. Another example is that the detectors report eight
missing method calls due to chained calls on a fluent API, such
as StringBuilder, where their analyses cannot determine that all
calls actually happen on the same object. JADET, GROUMINER, and
DMMC together report nine missing calls that happen transitively
in a helper method of the same class or through a wrapper object,
such as a BufferedStream. DMMC reports a missing call that is
located in the enclosing method of an anonymous class instance
and a missing close() call on a parameter that is, by contract,
closed by the callers. Moreover, GROUMINER reports four missing
conditions that are checked by assertion helper methods. An inter-
procedural detection strategy, as proposed by PR-MINER [11],
could mitigate this problem.

O4: Imprecisions of the detectors’ static analyses cause 51 (23.9%)
of the false positives in their top-20 findings. An inter-procedural
detection strategy might be able to eliminate 14 (6.6%) of these
false positives.

3. Alternative. The detectors often learn a pattern and then report
instances of alternative usages as violations. We define alternative
usages as a different functionally correct way to use an API, either
to achieve the same or a different functionality. Note that multiple
alternatives may occur frequently enough to induce patterns. For
example, JADET, TIKANGA, and DMMC learn that before a call
to next(), there should always be a call to hasNext() on an
Iterator. Consequently, they report 16 violations in usages that
check either isEmpty() or size() on the underlying collection
before fetching only the first element through the Iterator.
DMMC reports another violation, because isEmpty() is used

instead of size() before accessing a List. Another example
is that JADET, TIKANGA, and DMMC learn that collections are
filled one element at a time, e.g., by calling add(), and report 10
missing methods in usages that populate a collection differently,
e.g., through the constructor or using addAll(). GROUMINER

reports four usages where an alternative control statement is used,
e.g., a for instead of a while.

A special case of this root cause is alternatives to obtain an
instance of a type. For example, GROUMINER mistakenly reports
two missing constructor calls where the instance is not created
through a constructor call as in the pattern, but returned from a
method call. JADET and DMMC each report one missing construc-
tor call where an instance is not created, but passed as a parameter.
While handling alternative patterns is an open problem, some tools
such as ALATTIN already propose possible solutions [18].

O5: A violation of a pattern might be an instance of an alternative,
correct way to use the respective API. Not considering this causes
41 (19.2%) of the false positives in their top-20 findings.

4. Inside. Objects that are stored in fields are often used across
multiple methods of the field’s declaring class. The respective
API usages inside the individual methods might then deviate from
usage patterns without being actual misuses. Figure 1 shows an
example of such a case, where two fields of type Iterator, in
and out, are used to implement the class NeighborIterator.
When in yields no more elements (Line 12), the call to next() in
Line 14 happens on out without a prior check whether it has more
elements. While this appears to be a misuse of the Iterator

API inside the enclosing method, it is a correct usage inside
the enclosing class, since NeighborIterator itself implements
Iterator and, thereby, inherits its usage constraints. Correct
usages of NeighborIterator need to check its hasNext() method
(Line 6) before calling its next() method (Line 11), which ensures
that out has more elements when next() is called on it. DMMC
and GROUMINER report sixteen violations for such usages of
fields of a class.

A special case of this root cause is when a class uses part of its
own API in its implementation. For example, when a Collection

calls its own add() method in the implementation of its addAll()
method. DMMC and GROUMINER report four such violations.
This is particularly interesting, because these are actually self
usages of the API, while the detectors target client usages. Since
any codebase likely contains such self usages, detectors should
consider this.

O6: The implementation code of a class may contain partial
usages of the class’ own API or fields. Such usages cause 26
(12.2%) of the detectors’ false positives in their top-20 findings.

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2018 12

1 class NeighborIterator implements Iterator<GraphNode> {
2 private final Iterator<DiGraphEdge> in = ...;
3 private final Iterator<DiGraphEdge> out = ...;
4

5 @Override
6 public boolean hasNext() {
7 return in.hasNext() || out.hasNext();
8 }
9

10 @Override
11 public GraphNode next() {
12 boolean isOut = !in.hasNext();
13 Iterator<DiGraphEdge> curIterator = isOut ? out : in;
14 DiGraphEdge s = curIterator.next();
15 return isOut ? s.getDestination() : s.getSource();
16 }
17

18 ...
19 }

Figure 1: Correct Usages of Iterator Instances in the CLOSURE

Project that Violate Usage Patterns.

5. Dependent. When two objects’ states depend upon each
other, usages sometimes check the state of one and implicitly
draw conclusions about the state of the other. The detectors do
not consider such inter-dependencies. For example, when two
collections are maintained in parallel, i.e., always have the same
size, it is sufficient to check the size of one of them before accessing
either. The detectors falsely report 14 missing size checks in
such usages. In 10 of these cases, the equal size is ensured by
construction of the collections in the same method. In the remaining
four cases, it is ensured elsewhere in the same class. We consider
this a dangerous practice, because should the dependency between
the collections ever change, it is easy to miss some of the code
that relies on it. Thus, warning developers might be justified.
Nevertheless, we count these cases as false positives, since the
current usages are correct.

O7: Semantic dependencies between objects’ states may implicitly
ensure conditions. Not considering such inter-dependencies causes
14 (6.6%) of the detectors’ false positives in their top-20 findings.

6. Multiplicity. The detectors cannot handle methods that may
be called arbitrarily often. GROUMINER and JADET both learn a
pattern where the append() method of StringBuilder is called
twice and falsely report three missing method calls where it is
called only once.

O8: Detectors should distinguish methods that require a specific
number of calls, from methods that require one or more calls, and
methods that may be called arbitrarily often. Not considering this
causes 3 (1.4%) of the detectors’ false positives in their top-20
findings.

7. Bug. A few findings are likely caused by mistakes in the detector
implementations. DMMC reports four violations with an empty set
of missing methods. These empty sets are produced when none
of the potentially missing methods match DMMC’s prevalence
criteria. DMMC should probably filter such empty-set findings
before reporting. GROUMINER reports one missing if that actually
appears in all respective usages, because its graph mapping does
not match the respective if node from one of the usages with the
corresponding nodes of all the other usages.

7.2 Experiment RUB
We run all detectors to see which of the 64 known misuses from
MUBENCH they can detect when given the respective crafted correct

usages for pattern mining. Table 8 shows the results per detector.
The second and third columns show the number of potential hits and
the number of actual hits, after resolving disagreements. The fourth
and fifth columns show the detectors’ empirical recall upper bound
and conceptual recall upper bound, respectively. The sixth column
shows the Kappa score for the manual reviews. The remaining
columns show the frequencies of root causes for divergences
between a detector’s conceptual capabilities from Table 3 and
its actual findings in this experiment.

We find that GROUMINER has by far the best recall upper
bound and also shows the best recall in Experiment RUB. This
suggests that its graph representation is a good choice to capture
the differences between correct usages and patterns. However,
the gap between GROUMINER’s conceptual upper bound recall
and its empirical recall upper bound is quite noticeable. Actually,
Table 8 shows that all four detectors fall considerably short of their
conceptual recall upper bound in practice.

Generally, we observe two kinds of divergences between the
actual findings and the conceptual capabilities: Unexpected false
negatives, i.e., misuses that a detector should be able to detect,
but does not, and unexpected hits, i.e., misuses that a detector
supposedly cannot detect, but does. We investigate the root causes
of each divergence to identify actionable ways to improve detectors.

O9: All detectors’ empirical recall upper bound is much lower
than their conceptual recall upper bound. Detectors’ findings
frequently diverge from their conceptual capabilities.

The Kappa scores indicate good reviewer agreement, albeit a
little lower than in Experiment P. Since we only reviewed potential
hits, i.e., findings in the same method as a known misuse, many
potential hits were related to the known misuses. Consequently,
we had several disagreements on whether a particular potential hit
actually identifies a particular misuse. In total, we had 18 such
disagreements (JADET: 4; GROUMINER: 6; DMMC: 5; TIKANGA:
3), which led us to formulate the lenient review process described
in Section 5.2. We decided in favor of the detectors in eight of
these cases. We observe that the Kappa score is a little lower
for JADET, compared to the other detectors. Since the absolute
number of disagreements is comparable and JADET had relatively
few potential hits, i.e., a small number of decisions as a basis for
the Kappa score, we attribute the lower score to chance.

Unexpected False Negatives

1. Representation. Current usage representations are not expres-
sive enough to capture all details that are necessary to differentiate
between misuses and correct usages. For example, DMMC and
GROUMINER encode methods by their name only and, therefore,
cannot detect a missing method call, when the usage calls an
overloaded version of the respective method. For example, assume
that a pattern requires a call to getBytes(String), but the target
usage calls getBytes() instead. An ideal misuse detector would
still report a violation, since the expected method, with the correct
parameters, is not called. However, since only the method name
is used for comparison in both these detectors, such a violation is
not detected. Another example is that, to use a Cipher instance
for decryption, it must be in decrypt mode. This state condition is
ensured by passing the constant Cipher.DECRYPT to the Cipher’s
init() method. None of the detectors captures this way of ensuring
that the condition holds, because they do not encode method-call
arguments in their representations.

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2018 13

Table 8: Experiment RUB: Recall of the Isolated Detection Strategies and Root Causes for Divergences.

D
et

ec
to

r

Po
te

nt
ia

lH
its

A
ct

ua
lH

its

E
m

pi
ri

ca
lR

ec
al

l
U

pp
er

B
ou

nd

C
on

ce
pt

ua
lR

ec
al

l
U

pp
er

B
ou

nd

K
ap

pa
Sc

or
e Frequencies of Root Causes

Rep
res

en
tat

ion

M
atc

hin
g

Ana
lys

is

Bug Len
ien

t

Exc
ep

tio
n

Han
dli

ng

JADET 19 15 23.4% 29.7% 0.76 4 4 1 0 3 2
GROUMINER 46 31 48.4% 75.0% 0.84 9 4 6 0 8 0
DMMC 40 15 23.4% 28.1% 0.85 5 0 0 2 5 0
TIKANGA 23 13 20.3% 29.7% 0.84 4 7 2 0 5 2

Total 0.83 22 15 9 2 21 4

1 writer.write(value);
1 try {
2 writer.write(value);
3 } finally {
4 if (writer != null)
5 writer.close();
6 }

Figure 2: Not Closing Writer vs. Correctly Closing Writer.

O10: Inability to capture details necessary to differentiate misuses
from correct usages in the usage representation is responsible for
22 (45.8%) of the unexpected false negatives.

2. Matching. The detectors fail to relate a pattern and a usage.
Typically, detectors relate patterns and usages by their common
facts. If there are no or only few common facts, detectors report
no violation. For example, JADET’s facts are pairs of method calls.
In a scenario where JFrame’s setPreferredSize() method is
accidentally called after its pack() method, JADET represents the
usage with a pair (pack,setPreferredSize) and the pattern with
the reverse pair. Since it compares facts by equality, JADET finds
no relation between the pattern and the usage. Without common
facts between a usage and a pattern, the detector assumes that
these are two completely unrelated pieces of code and does not
report a violation. Another example is when the pattern’s facts
relate to a type, e.g., List in List.size(), while the usage’s
facts relate to a super- or sub-type such as ArrayList.size() or
Collection.size(). The detectors cannot relate these facts, since
they are unaware of the type hierarchy. Also, TIKANGA misses
four misuses, because the target misses more than two formulae
of the pattern (TIKANGA’s maximum distance for matching). For
example, Figure 2 shows a misuse that does not close a Writer

and the corresponding correct usage. In TIKANGA’s representation,
the difference between the misuse and the correct usage consists
of three formulae: (1) that close() follows write() in case of
normal execution, (2) that close() follows write() if the latter
throws an exception, and (3) that close() is preceded by a null

check.

O11: When matching patterns and misuses, detectors should
consider the semantics of their representation, e.g., call order and
the number of usage facts generated by adding specific usage
constructs, as well as code semantics, e.g., subtype relations.
Neglecting this is responsible for 15 (31.3%) of the unexpected
false negatives.

3. Analysis. The detectors rely on static analysis to extract
their usage representations. Imprecisions in these analyses may
obscure relations between patterns and usages. For example,
GROUMINER fails to detect one missing null check, because

1 ArrayList markers;
2 if (layer == Layer.FOREGROUND) {
3 markers = (ArrayList) this.fgMarkers.get(index);
4 }
5 else {
6 markers = (ArrayList) this.bgMarkers.get(index);
7 }
8 // if (markers != null) { // <-- missing in misuse
9 boolean removed = markers.remove(marker);

10 // }

Figure 3: Example of an Analysis Problem of GROUMINER.

it cannot determine the receiver type for chained calls, such as
for m() in o.getX().m(), which is not generally possible from
source code alone. Also, it fails to detect another four missing
null checks, because it overlooks dataflow dependencies. Figure 3
shows such a case. In addition to the null check, GROUMINER

also misses the dataflow from the get() calls to the remove()

call in the misuse, which makes the pattern and usage differ by
multiple facts. GROUMINER, however, only reports a violation if
the difference is a single fact. TIKANGA misses a call that occurs
in the correct usage in one case and fails to capture the call order
between two calls from the correct usage in another case. We
assume that the cause is a limitation of its analysis, but could not
ultimately verify this, because the tool’s developer is not available
to confirm the implementation details.

O12: Imprecision of the analysis, which obscures the relation
between patterns and misuses, causes 9 (18.8%) of the unexpected
false negatives.

4. Bug. DMMC skips the comparison of a usage and a pattern
if the pattern contains fewer calls than the usage, presumably to
improve performance. The pattern for AuthState from Apache’s
HTTPCLIENT, for instance, requires three calls, of which the mis-
use scenario misses one. However, if this misuse has an additional,
optional call that is not in the pattern, DMMC skips the comparison
since now both the pattern and the target each contain 3 calls. This
causes two unexpected false negatives in our experiment.

Unexpected Hits

1. Lenient. In all but two cases, the reason for unexpected hits
is the lenient review process we use for Experiment RUB (see
Section 5.2). In most cases, the detectors report a missing call
that indicates a missing condition check. The only other case
is that GROUMINER detects a missing context condition, in
a scenario where some SWING code is required to run on the
Event-Dispatching Thread (EDT). The delegation to the EDT is
implemented by wrapping the code in an anonymous instance of
Runnable, as shown in Figure 4. GROUMINER considers the code

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2018 14

1 public static void main(String[] args) {
2 SwingUtilities.invokeLater(new Runnable() {
3 public void run() {
4 JFrame f = new JFrame("Main Window");
5 // add components...
6 f.setVisible(true);
7 }
8 });
9 }

Figure 4: Instantiating Swing Components on the Event-
Dispatching Thread.

1 writer.write(value);

2 writer.close();

1 try {
2 writer.write(value);
3 } finally {
4 writer.close();
5 }

Figure 5: Closing Writer Without and With Exception Handling.

in run() as part of code of the enclosing method. Consequently,
it suggests the misuse by reporting a missing instantiation of
Runnable before the instantiation of the JFrame.

O13: Missing method calls may indicate missing condition checks.
Detectors that report these missing calls, despite not reporting
the exact condition, find violations outside of their conceptual
capabilities.

2. Exception Handling. In the remaining two cases, JADET and
TIKANGA correctly report missing exception handling. For example,
Figure 5 (left) shows a misuse where close() is not called when
write() throws an exception. A corresponding correct usage is
shown on the right. TIKANGA and JADET both represent the correct
usage with two facts {(write,close),(write:EXC,close)}, ef-
fectively encoding that close() is called after write() in normal
execution and in case of an exception. In the misuse, they find the
second fact missing. This capability of the implementation is not
mentioned in the respective publications.

7.3 Experiment R
In Experiment R, we run all detectors to assess their recall
without explicitly providing them with correct usages. In addition
to MUBENCH’s 64 misuses, we add the 14 new misuses from
Experiment P and exclude the 25 hand-crafted examples for which
there is no project code to mine patterns from. This leaves us with
53 misuses for Experiment R (Row 5 of Table 1).

Table 9 shows the results and Figure 6 visualizes the recall.
JADET finds only the three misuses it already identified in Experi-
ment P. GROUMINER does not find any of the misuses. TIKANGA

finds the five misuses it already identified in Experiment P, one of
the misuses that DMMC identified in Experiment P, and one of the
misuses that JADET identified in Experiment P. DMMC finds two
misuses from MUBENCH (both missing method calls), the eight
misuses it reported in Experiment P, and one misuse both JADET

and TIKANGA reported in Experiment P.
DMMC shows by far the best recall in Experiment R. This

suggests that its relatively simple detection strategy works well
when focusing on missing method calls. However, the recall of all
detectors in the realistic setting offered by Experiment R is low.
Analyzing the root causes for their bad performance, we identify
two general problems with the design of the detectors and their
evaluation setup.
1. Ranking. Experiment R shows that the detectors identify
additional misuses beyond their top-20 findings that we considered

Table 9: Experiment R: Recall of the Detectors on MUBENCH and
the New Misuses from Experiment P.

Detector Pote
nti

al
Hits

Actu
al

Hits

Rec
all

Kap
pa

Sco
re

JADET 4 3 5.7% 1.00
GROUMINER 4 0 0.0% 1.00
DMMC 25 11 20.8% 0.95
TIKANGA 9 7 13.2% 1.00

Total 0.97

in Experiment P. Unfortunately, they rank those misuses very low.
For example, the two MUBENCH misuses DMMC finds are ranked
309 and 613. This is far beyond the number of findings that we
can reasonably expect a user to assess. The four detectors in our
experiments all use different ranking strategies, but none of the
detectors from our survey in Section 4 compared different strategies
on the same detector.

O14: Detectors need better ranking strategies to report true
positives within their top findings. Furthermore, researchers
should compare alternative ranking strategies for single detectors.

2. Usage Examples. The huge difference in the detectors’ perfor-
mance between Experiments RUB and R suggests that the cause
is a shortage of correct usage examples in the target projects.
One possibility is that the number of such examples is smaller
than the detectors’ minimal support for pattern mining, in which
case we could simply lower these thresholds. However, this would
likely also increase the number of false positives as the mined
patterns generally become less reliable, which underlines the need
to effectively filter false positives (O1) and improve ranking (O14).
Another possibility is that no, or only very few, such examples
exist in the projects. This would be a general problem with the
evaluation setup of misuse detectors. To solve it, we need additional
sources of usage examples to mine patterns from. Gruska et al. [37]
demonstrated one possible approach by applying JADET in a cross-
project setting with 6,000 projects, but did not measure recall.
This strategy is also common in other recommender systems for
software engineering, such as code-completion engines [50]. The
misuse detectors CAR-MINER [17] and ALATTIN [18] implement an
alternative approach, by specifically searching for usage examples
of the APIs used in the target project via a code-search engine.
Related to this, other lines of research proposed code-search engines
to find usage examples in open source projects [51], [52] or on
StackOverflow [53].

O15: All detectors have low recall, likely due to lack of correct
usage examples in target projects. Adoption of existing code-
search techniques and cross-project mining could mitigate this
problem.

The Kappa scores indicate mostly perfect reviewer agreement
in Experiment R. This is because the detectors found almost
exclusively the misuses that one of them also identified in
Experiment P, i.e., the misuses we already agreed on before. The
exception is DMMC, where we initially disagreed on one of its 14
potential hits for misuses from the original MUBENCH dataset.

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2018 15

MUBench
(39)

2
2

DMMC (11)

Jadet (3)

Tikanga (7)

116

3

1
37

Figure 6: Recall of the Detectors in Experiment R

7.4 User Experience

We now report on our experiences as users of our subject misuse
detectors. Our observations is based on the experience we gained
while reviewing the detectors’ findings in our experiments.

DMMC simply reports present and missing method calls, along
with the source line number of the first present call. We find this
output generally easy to interpret. The line number helps, especially,
to locate usages in large methods. GROUMINER reports pattern and
usage graphs, which are more difficult to understand. However, we
find that the structural properties of the source code that the graph
representation captures help with the interpretation. JADET and
TIKANGA report the present and missing facts of their respective
representations. We find that it is often difficult to relate the facts to
each other, especially in the presence of multiple usages of the same
API. This might be, in part, due to the textual representation we
look at. While none of the detector implementations was intended to
present their findings to end users, we still find it interesting to note
that the challenge of explaining findings seems to correlate with
the distance between the source code and the usage representation.

We also find that Bytecode-based detectors may report findings
in code that the compiler introduces. For example, the compiler
translates foreach loops into Iterator usages. TIKANGA reports
a missing call in such a usage, i.e., it reports a missing call on
Iterator in a method where Iterator does not appear in the
source code. This finding confused us at first. While additional
steps could be taken to assist the user in mapping such findings
back to the source code, source-based detectors do not face this
problem.

Our lenient review process shows that missing method calls
frequently indicate missing conditions (O13 and O2). While such
findings do not report the entire problem, we found it relatively easy
to deduce their meaning. In contrast, GROUMINER reports only a
missing if node, when it captures a missing condition. While these
findings more explicitly indicate the problem of a missing check,
we feel that they are actually harder to act upon, because they give
no information about what should be checked. This indicates a
gap between a detector’s capability to find a violation type and its
ability to explain respective violations to users.

Above all, we believe that the detectors’ precision is likely to
be the biggest threat to their applicability in practice. As a previous
study by Johnson et al. [41] shows, large numbers of false positives
are a major barrier in the adoption of code analysis tools. This
problem is made worse by the low recall of the detectors. Even
if developers would take the time to review all reported warnings,
they would still likely miss the vast majority of misuses.

7.5 Call to Action

We find that misuse detectors are practically capable of detecting a
considerable part of the misuses in MUBENCH, when provided with
the correct usages to compare to (Experiment RUB). However, even
though the detectors are also capable of finding some misuses in a

realistic setting (Experiments P and R), they suffer from extremely
low precision (O1) and recall (O15). We identify four root causes
for false negatives, seven root causes for false positives, and two
general problems with the design of detectors and how they are
typically evaluated. This leads us to several observations on how
to advance the state-of-the-art in API-misuse detection. Therefore,
we call researchers to action:
• We first need a precise definition of API usages, considering

usage properties, such as the usage location (O6) and call
multiplicities (O8).

• We need a representation of such usages that captures all code
details necessary to distinguish correct usages from misuses
(O10) and more precise analyses to identify usages in code
(O12 and O4).

• We need detectors that retrieve sufficiently many usage
examples using project-external sources, such as large project
sets or code-search engines (O15).

• We need detectors that go beyond the naive assumption that
a deviation from the most-frequent usage corresponds to a
misuse (O3), but consider program semantics, such as type
hierarchies (O11) and implicit dependencies between objects
(O7). We hypothesize that probabilistic models might be a
way to tackle this problem.

• We need strategies to properly match patterns and usages in
the presence of violations (O9 and O11).

• We need strategies to properly handle alternative patterns for
the same API (O5).

• Finally, we need good ranking strategies, to reduce the cost of
reviewing findings (O14).

In order to achieve all this, we need repeatable and replicable
studies that enable systematic evaluation and analysis of alternative
approaches and strategies. We publish MUBENCH and MUBENCH-
PIPE [24], as a foundation for such work, and call researchers to
use and contribute to this infrastructure, to advance the state of the
art in API-misuse detection.

8 THREATS TO VALIDITY

Construct Validity. Any detector’s performance is dependent on
its configuration. Due to the high effort of reviewing findings, we
could not try different configurations for each detector. However, to
give each detector a fair chance, we used the optimal configurations
reported in the respective publications.

Our study focuses on static misuse detectors. Approaches based
on dynamic analyses may perform differently and have unique
strengths and weaknesses. To enable dynamic analyses of the
project versions in MUBENCH, we would have to ensure that the
respective code is executable (which requires a sufficient run-time
environment, in addition to compile-time dependencies) and to
provide example inputs for the execution. It is unclear how to
do this such that it results in a fair comparison of both static
and dynamic techniques, without resorting to comparing apples to
oranges. In this work, we focused only on static approaches.

Our experiments focus on detectors that detect misuses in Java
code. Therefore, the results may not generalize to detectors for
other languages. We decided to focus on this subset of detectors,
because the majority of approaches we identified in our survey
targets Java. To include detectors that target other languages, we
would have to either migrate them to Java or build up additional
datasets for the respective languages, both of which is outside the
scope of this work.

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2018 16

Internal Validity. Reviewing the detectors’ findings was done by
three of the authors and was not blind (i.e., we knew the detectors
we were reviewing findings for). We could not do blind reviewing,
because each approach has a distinct representation of usages and
violations that cannot be anonymized. Moreover, two of the authors
of this work are among the original authors of GROUMINER. We
did our best to review objectively. To avoid bias, every finding
was independently reviewed by two authors and for all findings of
GROUMINER, at least one review was done by an author who was
not involved in the original work.

While we did ask the original authors to confirm our assessment
of the conceptual capabilities of their tools, we did not ask them
to confirm the empirical results of our experiments. We estimate
that, including discussions to resolve disagreements, it required
each reviewer on average 2 minutes to verify whether a detector
identified one of the known misuses in Experiments RUB and R
and 5 minutes to verify whether a detector’s finding identifies an
actual misuse in Experiment P, where we needed to understand
the respective code, check documentation, and sometimes also
look into transitively called methods. This amounts to 24.8 hours
of review effort per reviewer, 4 hours for JADET, 7.2 hours for
GROUMINER, 4.7 hours for TIKANGA, and 8.9 hours for DMMC.
We decided it is unreasonable to expect the original authors to
invest this amount of time in verifying our assessments. We do,
however, publish all our review data [10] to allow them and others
to revisit our decisions.
External Validity. There may be violation categories we miss in
MUC. The MUBENCH dataset may also not have enough examples
of all violations. This may impact the detectors’ comparisons.
However, the existing MUBENCH dataset is based on over 1,200
reports from state-of-the-art bug datasets as well as developer
input [3] and the results of two empirical studies on API usage
directives. Our survey of existing detectors’ capabilities also
includes 12 detectors. This makes it unlikely that we miss a
prevalent violation category.

Our dataset may not be representative of all possible real-
world API misuses, especially, because we could only compile 29
(52%) of the 55 project versions and had to exclude the misuses
in the other versions from our experiments. Compiling arbitrary
versions of projects from the source control history of project is a
challenging task. We invested two full weeks work of one of the
authors and additional 3 months work of a student, to include as
many project versions as possible. Still, loosing the examples for
which we could not compile the respective project versions may
bias the results of our experiments.

Ideally, our experiments would include thousands of misuses
from a large number of projects and in each individual project
version, to give us greater confidence in the generalizability of our
results. However, currently, there is no such dataset. We invested
several months of effort to collect and prepare MUBENCH in its
current state, to make a first step towards a large benchmark. Now
that the we have the infrastructure in place, it is straightforward to
extend MUBENCH with misuse examples from different sources.

We publish MUBENCHPIPE and MUBENCH [24] and encourage
others to extend the dataset and repeat our experiments, also with
other detectors and detector configurations.

9 CONCLUSIONS

API-misuse detectors help developers write better software by
warning them about potential misuses in their code. Despite the

existence of many such detectors, there has been no attempt to
systematically study types of API misuses and design detectors
accordingly. In this paper, we addressed this gap by creating MUC,
based on a dataset of 100 misuses. By evaluating the conceptual
capabilities of 12 existing detectors against MUC, we identified
shortcomings qualitatively. We then developed an automated
benchmark pipeline, MUBENCHPIPE, to empirically evaluate four
existing detectors. Our results reveal that misuse detectors are
practically capable of detecting misuses, when explicitly provided
with correct usages to mine patterns from. However, they suffer
from extremely low precision and recall in a realistic application
setting. We identify four root causes for false negatives, seven root
causes for false positives, and two general problems with the design
of detectors and the commonly-used evaluation setup. These lead
us to several observations on how to advance the state-of-the-art
in API-misuse detection in future work. We publish all our tooling
and our dataset [24] to encourage other researchers to join us along
this path.

ACKNOWLEDGEMENTS

We thank our students M. Kämmerer and J. Schlitzer for their
work on MUBENCHPIPE and their help preparing MUBENCH, M.
Monperrus for providing DMMC, A. Zeller and A. Wasylkowski
for providing JADET and TIKANGA, and M. Pradel for additional
examples for MUBENCH.

This work was partially funded by the German Federal Ministry
of Education and Research (BMBF) within the Software Campus
project Eko, grant no. 01IS12054, by the DFG as part of CRC
1119 CROSSING, and by the Hessen State Ministry for Higher
Education, Research and the Arts (HMWK) within CRISP. The
authors assume responsibility for the paper content.

REFERENCES

[1] M. Monperrus and M. Mezini, “Detecting missing method calls as viola-
tions of the majority rule,” ACM Transactions on Software Engineering
and Methodology, vol. 22, no. 1, pp. 1–25, 2013.

[2] J. Sushine, J. D. Herbsleb, and J. Aldrich, “Searching the state space: A
qualitative study of API protocol usability,” in Proceedings of the 23rd

IEEE International Conference on Program Comprehension, ser. ICPC
’15. IEEE Computer Society Press, 2015, pp. 82–93.

[3] S. Amann, S. Nadi, H. A. Nguyen, T. N. Nguyen, and M. Mezini,
“MUBench: A benchmark for API-misuse detectors,” in Proceedings
of the 13th Working Conference on Mining Software Repositories, ser.
MSR ’16. ACM Press, 2016.

[4] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben, and
M. Smith, “Why Eve and Mallory love Android: An analysis of Android
SSL (in)security,” in Proceedings of the 19th ACM Conference on
Computer and Communications Security, ser. CCS ’12. ACM Press,
2012, pp. 50–61.

[5] M. Egele, D. Brumley, Y. Fratantonio, and C. Kruegel, “An empirical
study of cryptographic misuse in Android applications,” in Proceedings
of the Conference on Computer & Communications Security, ser. CCS’13.
ACM Press, 2013, pp. 73–84.

[6] S. Nadi, S. Krüger, M. Mezini, and E. Bodden, “”Jumping through hoops”:
Why do developers struggle with cryptography APIs?” in Proceedings of
the 38th International Conference on Software Engineering, ser. ICSE’16.
ACM Press, 2016.

[7] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and V. Shmatikov,
“The most dangerous code in the world: Validating SSL certificates in
non-browser software,” in Proceedings of the 19th ACM Conference on
Computer and Communications Security, ser. CCS ’12. ACM Press,
2012, pp. 38–49.

[8] U. Dekel and J. D. Herbsleb, “Improving API documentation usability with
knowledge pushing,” in Proceedings of the 31st International Conference
on Software Engineering, ser. ICSE ’09. IEEE Computer Society Press,
2009, pp. 320–330.

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2018 17

[9] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek, and C. Stransky,
“You get where you’re looking for. The impact of information sources on
code security,” in Proceedings of the 37th IEEE Symposium on Security
and Privacy. IEEE Computer Society Press, 2016.

[10] “Artifact Page,” 2017. [Online]. Available: http://www.st.informatik.
tu-darmstadt.de/artifacts/mustudy/

[11] Z. Li and Y. Zhou, “PR-Miner: Automatically extracting implicit program-
ming rules and detecting violations in large software code,” in Proceedings
of the 10th European Software Engineering Conference Held Jointly with
13th ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ser. ESEC/FSE ’13. ACM Press, 2005, pp. 306–315.

[12] C. Lindig, “Mining patterns and violations using concept analysis,”
Universität des Saarlandes, Saarbrücken, Germany, Tech. Rep., 2007.

[13] A. Wasylkowski, A. Zeller, and C. Lindig, “Detecting object usage
anomalies,” in Proceedings of the 6th ACM Joint Meeting of the European
Software Engineering Conference and the ACM SIGSOFT Symposium on
The Foundations of Software Engineering, ser. ESEC/FSE ’07. ACM
Press, 2007, pp. 35–44.

[14] M. K. Ramanathan, A. Grama, and S. Jagannathan, “Static specification
inference using predicate mining,” in Proceedings of the 28th ACM SIG-
PLAN Conference on Programming Language Design and Implementation,
ser. PLDI ’07. ACM Press, 2007, pp. 123–134.

[15] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-Kofahi, and T. N.
Nguyen, “Graph-based mining of multiple object usage patterns,” in
Proceedings of the 7th ACM Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, ser. ESEC/FSE ’09. ACM Press,
2009, pp. 383–392.

[16] M. Acharya and T. Xie, “Mining API error-handling specifications from
source code,” in Proceedings of the 12th International Conference on
Fundamental Approaches to Software Engineering: Held As Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS
2009, ser. FASE ’09. Springer-Verlag GmbH, 2009, pp. 370–384.

[17] S. Thummalapenta and T. Xie, “Mining exception-handling rules as
sequence association rules,” in Proceedings of the 31st International
Conference on Software Engineering, ser. ICSE ’09. IEEE Computer
Society Press, 2009, pp. 496–506.

[18] ——, “Alattin: Mining alternative patterns for detecting neglected condi-
tions,” in Proceedings of the 24th IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE ’09. IEEE Computer Society
Press, 2009, pp. 283–294.

[19] A. Wasylkowski and A. Zeller, “Mining temporal specifications from
object usage,” Automated Software Engineering, vol. 18, no. 3-4, pp.
263–292, 2011.

[20] T. T. Nguyen, H. V. Pham, P. M. Vu, and T. T. Nguyen, “Recommending
API usages for mobile apps with Hidden Markov Model,” in Proceedings
of the 30th ACM/IEEE International Conference on Automated Software
Engineering, ser. ASE ’15. IEEE Computer Society Press, 2015, pp.
795–800.

[21] O. Legunsen, W. U. Hassan, X. Xu, G. Roşu, and D. Marinov, “How good
are the specs? A study of the bug-finding effectiveness of existing Java
API specifications,” in Proceedings of the 31st IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’16. ACM
Press, 2016, pp. 602–613.

[22] M. Monperrus, M. Eichberg, E. Tekes, and M. Mezini, “What should
developers be aware of? An empirical study on the directives of API
documentation,” Empirical Software Engineering, vol. 17, no. 6, pp.
703–737, 2012.

[23] C. DiBona, “Bidding farewell to Google Code.” [Online]. Available: http://
google-opensource.blogspot.com/2015/03/farewell-to-google-code.html

[24] “MUBench,” 2017. [Online]. Available: https://github.com/stg-tud/
MUBench/

[25] M. Pradel and T. R. Gross, “Leveraging test generation and specification
mining for automated bug detection without false positives,” in Proceed-
ings of the 34th International Conference on Software Engineering, ser.
ICSE ’12. IEEE Computer Society Press, 2012, pp. 288–298.

[26] Q. Luo, Y. Zhang, C. Lee, D. Jin, P. O. Meredith, T. F. Şerbănuţă,
and G. Rosu, “RV-Monitor: Efficient parametric runtime verification
with simultaneous properties,” in Runtime Verification. Springer-Verlag
GmbH, 2014, pp. 285–300.

[27] M. Pradel, C. Jaspan, J. Aldrich, and T. R. Gross, “Statically checking
API protocol conformance with mined multi-object specifications,” in
Proceedings of the 34th International Conference on Software Engineering,
ser. ICSE ’12. IEEE Computer Society Press, 2012, pp. 925–935.

[28] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf, “Bugs as
deviant behavior: A general approach to inferring errors in systems

code,” in Proceedings of the 18th ACM Symposium on Operating Systems
Principles, ser. SOSP ’01. ACM Press, 2001, pp. 57–72.

[29] “IEEE standard classification for software anomalies,” IEEE Std 1044-
2009 (Revision of IEEE Std 1044-1993), pp. 1–23, 2010.

[30] R. Chillarege, I. S. Bhandari, J. K. Chaar, M. J. Halliday, D. S.
Moebus, B. K. Ray, and M.-Y. Wong, “Orthogonal defect classification-a
concept for in-process measurements,” IEEE Transactions on Software
Engineering, vol. 18, no. 11, pp. 943–956, 1992.

[31] M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing the
state of static analysis: A large-scale evaluation in open source software,”
in Proceedings of the 23rd IEEE International Conference on Software
Analysis, Evolution, and Reengineering, vol. 1. IEEE Computer Society
Press, 2016.

[32] B. G. Glaser and A. L. Strauss, The Discovery of Grounded Theory:
Strategies for Qualitative Research. Aldine de Gruyter, 1967, vol. 46.

[33] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford,
“Automated API property inference techniques,” IEEE Transactions on
Software Engineering, vol. 39, no. 5, pp. 613–637, 2013.

[34] M. K. Ramanathan, A. Grama, and S. Jagannathan, “Path-sensitive
inference of function precedence protocols,” in Proceedings of the 29th

International Conference on Software Engineering, ser. ICSE ’07. IEEE
Computer Society Press, 2007, pp. 240–250.

[35] B. Ganter and R. Wille, Formal Concept Analysis: Mathematical Founda-
tions, 1st ed. Springer-Verlag New York, Inc., 1997.

[36] M. Monperrus, M. Bruch, and M. Mezini, “Detecting missing method
calls in object-oriented software,” in Proceedings of the 24th European
Conference on Object-oriented Programming, ser. ECOOP ’10. Springer-
Verlag GmbH, 2010, pp. 2–25.

[37] N. Gruska, A. Wasylkowski, and A. Zeller, “Learning from 6,000 projects,”
in Proceedings of the 19th International Symposium on Software Testing
and Analysis, ser. ISTA ’10. ACM Press, 2010, pp. 119–129.

[38] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur, “Dynamic itemset
counting and implication rules for market basket data,” in Proceedings
of the ACM SIGMOD International Conference on Management of Data,
ser. SIGMOD ’97. ACM Press, 1997, pp. 255–264.

[39] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
R. Stata, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata, “Extended
static checking for Java,” ACM SIGPLAN Notices, vol. 37, no. 5, pp.
234–245, 2002.

[40] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler, “A few billion lines of code
later: Using static analysis to find bugs in the real world,” Communications
of the ACM, vol. 53, no. 2, pp. 66–75, 2010.

[41] B. Johnson and Y. Song, “Why don’t software developers use static
analysis tools to find bugs?” in Proceedings of the 35th International
Conference on Software Engineering, ser. ICSE ’13. IEEE Computer
Society Press, 2013.

[42] G. Inc., “Closure compiler,” 2017. [Online]. Available: https:
//developers.google.com/closure/compiler/

[43] iText Software, “iText, a Java PDF Library,” 2017. [Online]. Available:
https://sourceforge.net/projects/itext/

[44] R. U. i. N. Digital Security group, “JMRTD: An Open Source Java
Implementation of Machine Readable Travel Documents,” 2017. [Online].
Available: http://jmrtd.org/

[45] T. J. project, “Joda-Time,” 2017. [Online]. Available: http://www.joda.
org/joda-time/

[46] T. A. S. Foundation, “Apache Lucene,” 2017. [Online]. Available:
https://lucene.apache.org/core/

[47] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou, “BugBench:
Benchmarks for evaluating bug detection tools,” in In Workshop on the
Evaluation of Software Defect Detection Tools, 2005.

[48] C. Cifuentes, C. Hoermann, N. Keynes, L. Li, S. Long, E. Mealy,
M. Mounteney, and B. Scholz, “BegBunch: Benchmarking for C bug
detection tools,” in Proceedings of the International Workshop on Defects
in Large Software Systems, ser. DEFECTS ’09. ACM Press, 2009, pp.
16–20.

[49] M. A. Saied, O. Benomar, H. Abdeen, and H. Sahraoui, “Mining multi-
level API usage patterns,” in Proceedings of the 22nd IEEE International
Conference on Software Analysis, Evolution, and Reengineering, ser.
SANER ’15. IEEE Computer Society Press, 2015, pp. 23–32.

[50] S. Proksch, J. Lerch, and M. Mezini, “Intelligent code completion with
Bayesian networks,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 25, no. 1, pp. 1–31, 2015.

[51] M. Grechanik, C. Fu, Q. Xie, C. McMillan, D. Poshyvanyk, and C. Cumby,
“A search engine for finding highly relevant applications,” in Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineering
- Volume 1, ser. ICSE ’10. ACM Press, 2010, pp. 475–484.

http://www.st.informatik.tu-darmstadt.de/artifacts/mustudy/
http://www.st.informatik.tu-darmstadt.de/artifacts/mustudy/
http://google-opensource.blogspot.com/2015/03/farewell-to-google-code.html
http://google-opensource.blogspot.com/2015/03/farewell-to-google-code.html
https://github.com/stg-tud/MUBench/
https://github.com/stg-tud/MUBench/
https://developers.google.com/closure/compiler/
https://developers.google.com/closure/compiler/
https://sourceforge.net/projects/itext/
http://jmrtd.org/
http://www.joda.org/joda-time/
http://www.joda.org/joda-time/
https://lucene.apache.org/core/

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2018 18

[52] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu, “Portfolio:
Finding relevant functions and their usage,” in Proceedings of the 33rd

International Conference on Software Engineering, ser. ICSE ’11. ACM
Press, 2011, pp. 111–120.

[53] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza,
“Mining StackOverflow to turn the IDE into a self-confident programming
prompter,” in Proceedings of the 11th Working Conference on Mining
Software Repositories, ser. MSR ’14. ACM Press, 2014, pp. 102–111.

Sven Amann is a doctoral candidate at TU Darm-
stadt, Germany. His primary research domain
is API-misuse detection using static analyses
and machine-learning techniques applied to ex-
amples mined from large code repositores and
code search engines. Sven is founder and project
lead of the MUBench benchmark suite. More on
http://sven-amann.de.

Hoan Nguyen is a post-doctoral researcher at
Iowa State University. He received his PhD from
Iowa State University. His research interests in-
clude program analysis, software evolution and
maintenance, and mining software repositories.

Sarah Nadi is an Assistant Professor at the Uni-
versity of Alberta. She received both her MMath
(2010) and PhD (2014) degrees from the Uni-
versity of Waterloo, Canada, and spent approxi-
mately two years as a post-doctoral researcher at
TU Darmstadt, Germany. Her research interests
include mining software repositories, software
product lines, and helping developers use APIs
correctly.

Tien Nguyen is an associate professor at The
University of Texas at Dallas. His research inter-
ests include program analysis, large-scale mining
software repositories, and statistical approaches
in software engineering.

https://web.archive.org/web/20170606231336/http://sven-amann.de

ACCEPTED FOR PUBLICATION IN IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 2018 19

Mira Mezini received the diploma degree in
computer science from the University of Tirana,
Albania, and the PhD degree in computer science
from the University of Siegen, Germany. She is
a professor of computer science at the Techni-

sche Universität Darmstadt, Germany, where she
heads the Software Technology Lab.

	1 Introduction
	2 Background and Terminology
	3 The API-Misuse Classification (MuC)
	3.1 Motivation for MuC
	3.2 The Classification

	4 Conceptual Classification of Existing Misuse Detectors
	5 Experimental Setup
	5.1 Experiment P
	5.2 Experiment RUB
	5.3 Experiment R

	6 MuBenchPipe
	6.1 Automation
	6.2 Reproduction, Replication, and Extension

	7 Results
	7.1 Experiment P
	7.2 Experiment RUB
	7.3 Experiment R
	7.4 User Experience
	7.5 Call to Action

	8 Threats to Validity
	9 Conclusions
	References
	Biographies
	Sven Amann
	Hoan Nguyen
	Sarah Nadi
	Tien Nguyen
	Mira Mezini

