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Abstract
While cryptography is now readily available to everyone
and can, provably, protect private information from attack-
ers, we still frequently hear about major data leakages, many
of which are due to improper use of cryptographic mecha-
nisms. The problem is that many application developers are
not cryptographic experts. Even though high-quality crypto-
graphic APIs are widely available, programmers often select
the wrong algorithms or misuse APIs due to a lack of un-
derstanding. Such issues arise with both simple operations
such as encryption as well as with complex secure commu-
nication protocols such as SSL. In this paper, we provide
a long-term solution that helps application developers inte-
grate cryptographic components correctly and securely by
bridging the gap between cryptographers and application de-
velopers.

Our solution consists of a software product line (with an
underlying feature model) that automatically identifies the
correct cryptographic algorithms to use, based on the de-
veloper’s answers to high-level questions in non-expert ter-
minology. Each feature (i.e., cryptographic algorithm) maps
into corresponding Java code and a usage protocol describ-
ing API restrictions. By composing the user’s selected fea-
tures, we automatically synthesize a secure code blueprint
and a usage protocol that corresponds to the selected us-
age scenario. Since the developer may change the applica-
tion code over time, we use the usage protocols to statically
analyze the program and ensure that the correct use of the
API is not violated over time.
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1. Introduction
The Java Cryptography Architecure (JCA)1, containing the
Java Cryptography Extension (JCE), is designed to allow
Java application developers to easily use cryptography. JCE
separates the Application Programming Interfaces (APIs)
developers use from the underlying implementations that
can be provided by any provider (e.g., Java’s default imple-
mentation, BouncyCastle2 or FlexiProvider3). Despite such
design efforts, the JCE APIs themselves offer a broad va-
riety of different algorithms that in turn support a multi-
tude of modes and configuration options. Additionally, each
provider may support additional algorithms or worse, pro-
vide different default values for the same JCE API call. As a
result, many Java software developers are challenged by the
task to use and compose these API components correctly.

Previous research has already identified severe security
vulnerabilities due to misuses of cryptographic APIs [25,
27]. The problem is that application developers typically
lack cryptographic expertise while cryptographic libraries
embody highly specialized knowledge that they fail to ex-
pose to clients at the appropriate level of abstraction. Sug-
gested solutions to this problem include better API docu-
mentation [24, 27] and the use of program-analysis tools
that check for certain misuse-related vulnerabilities [24, 25].
While both these solutions decrease the number of security
vulnerabilities, proper documentation is hard to enforce and

1 http://docs.oracle.com/javase/6/docs/technotes/guides/
security/crypto/CryptoSpec.html
2 www.bouncycastle.org
3 www.flexiprovider.de
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API developers are often bad at documenting their code [40].
On the other hand, even running a combination of multiple
analysis tools will likely catch only some of the possible vul-
nerabilities.

In this paper, we propose a more comprehensive, long-
term solution that combines the advantages of documenta-
tion and program analysis with ease of use and evolvability.
Our solution separates API users from the domain knowl-
edge required to understand these APIs through an expert
system, the Open CROSSING Crypto Expert (OpenCCE).4

OPENCCE (1) guides developers through selecting the rel-
evant cryptographic components to use, (2) automatically
generates the required code with the correct API calls for
them, and (3) analyzes the final program to ensure that no
threats have been introduced, neither during initial develop-
ment, nor during program evolution. Note that the main goal
of OPENCCE is not to detect intentional, malicious code, but
to avoid unintentional mistakes by non-expert developers.

Our solution relies on the observation that most crypto-
graphic libraries provide at least some degree of compile-
time variability which, at least on a conceptual level, can
be considered a software product line (SPL). Software prod-
uct lines provide a systematic way of generating similar,
yet different, products [20]. Cryptographic algorithms typ-
ically come with a large number of configuration options
that select a number of different algorithmic variations,
each of which may come with its own pre-conditions, post-
conditions, security parameters, guarantees, and other API-
related usage requirements. Most cryptographic solutions
(e.g., securing a password, proving the authenticity of a mes-
sage, encrypting a file using a password, etc.) are essentially
parameterized combinations of common cryptographic al-
gorithms. Thus, creating a cryptographic solution can be
thought of as generating one product from a family of possi-
ble products.

We build OPENCCE as a tool for managing an SPL,
where cryptographic components are abstracted through a
feature model [32]. In OPENCCE, the feature model encap-
sulates domain knowledge such as what the different crypto-
graphic algorithms are, which class of problems they can be
applied to, and their limitations or dependencies. For exam-
ple, several encryption algorithms have trade-offs between
security, speed, and memory usage. Some algorithms de-
pend on other algorithms; a digitial signatue for instance re-
quires not only the signature algorithm itself, but also a hash
function. However, not all combinations of signature algo-
rithms and digests yield a secure digital signature. Further-
more, since correctly using an API to accomplish a task of-
ten requires calls to several methods in a specific order [41],
we also express the usage protocol of such components in
a separate specification that is linked to the feature model.
For example, a usage protocol may specify that the applica-

4 CROSSING is the name of the collaborative research center within which
OpenCCE will be developed.

1 //custom method getRandomKey(keyLength, seed)
2 //to generate alphanumeric key of keyLength bits
3 //based on Java’s Random class seeded with seed
4 byte[] key = getRandomKey(192, 1873);
5
6 Cipher cipher = Cipher.getInstance("AES");
7
8 SecretKey keyObj = new SecretKeySpec(key,"AES");
9

10 cipher.init(Cipher.ENCRYPT_MODE, keyObj);
11 byte[] cipherText = cipher.doFinal(input);

Figure 1. Example of using an AES cipher

tion must first check the issuer of a certificate before passing
this certificate on to the authentication primitive. Such usage
protocols can then be translated into static analyses that au-
tomatically ensure correct integration. As developers extend
and modify their applications over time, those static analy-
ses are not only executed once, but continuously throughout
the development and maintenance process.

The novelty of OPENCCE is that it provides a long-
term solution to many security problems by integrating,
for the first time, various well-established research areas
in software-engineering and program-analysis with crypto-
graphic domain knowledge. OPENCCE focuses on the cryp-
tography domain because of the grave consequences that can
result from cryptographic misuse, but the general idea can
also be applied to other domains that require such expert
knowledge. OPENCCE bridges the gap in both knowledge
and vocabulary between domain experts and software devel-
opers.

2. Motivating Scenario
Let us meet Alice, a typical Java programmer with no cryp-
tography background. As part of a web application she is
developing, Alice has to securely (1) send messages and (2)
store user passwords. Alice searches for ways to accomplish
this in Java and realizes she needs to use the Java Cryptog-
raphy Extension (JCE) APIs. While Alice does her best to
make the code secure, she faces a number of challenges that
make it likely for her to introduce vulnerabilities.

2.1 Securely Sending Messages
Through searching the web and asking colleagues, Alice re-
alizes she requires a cipher to encrypt and decrypt the mes-
sages she needs to send securely. Because it is known to be
fast, Alice decides to use the Advanced Encryption Stan-
dard (AES) cipher [22] and implements the code in Figure 1
which focuses only on the encryption part of the task. How-
ever, the code shown has the following problems.

First, Alice uses java.util.Random to generate the key
she will use for encryption (Lines 1 - 4). She is not aware
that the Random class is a weak pseudo-random number gen-
erator with outputs that are not independent. An attacker
who observes only a few values can thus predict all future



ones. Additionally, the seed used for generating the key is
the same for all encryption operations carried out by Al-
ice’s program. This reduces the effort for an attacker to break
the cipher as the seed only needs to be guessed once. Even
worse, this single seed is not even random, but hard-coded
into the application and shared between all installations of
the program. An attacker can simply obtain the seed by de-
compiling one instance of the program. Not specifying a cus-
tom seed, but rather relying on Java’s default seeding would
not have solved the issue either as the default seed is based
on the system time which can be easily brute-forced. What
Alice really needs is a cryptographically secure pseudo-
random number generator combined with a proper source
of entropy (e.g., output from /dev/random on Unix systems)
for the seed. To this end, Alice should be using the Java API
java.security.SecureRandom with the appropriate parame-
ters.

Second, being unaware of the library’s defaults, Alice
makes a fatal mistake while initializing the AES cipher. If
no block cipher mode is explicitly specified by the devel-
oper, the JCE uses the now known to be insecure Electronic
Codebook (ECB) block cipher mode. ECB mode causes two
equal blocks of plaintext to be encrypted to two equal blocks
of ciphertext. Thus, patterns that are present in the plaintext
are retained in the ciphertext, which can leak a substantial
amount of information [24].

2.2 Securely Storing User Passwords
Alice also needs to securely store user passwords in a
database for later authentication. As far as Alice is con-
cerned, securely storing user passwords means that they
should not be stored as plain text and it should be hard for an
attacker to extract them. She, therefore, thinks that her en-
cryption code above can also work for encrypting passwords
and storing them in a database. When the user is authenti-
cating, she can then decrypt the password and compare it to
what the user enters.

While nothing is technically wrong with using encryption
code to store a password, cryptography experts would argue
that storing a hashed password is better since hashing is a
one-way function (i.e., cannot be reversed) while encryption
using symmetric ciphers can be reversed with access to the
key. In that particular example, attackers could decompile
the code to get access to the (deterministic) seed information
and eventually the key. Hence, it is better for Alice to use a
hashing algorithm in such a situation [4, Chapter 2.5.4].

However, merely using a hash function like SHA-1 on
the password is not an optimal solution either as this would
allow for efficient brute-force attacks using pre-computed ta-
bles such as Rainbow Tables [37]. Instead, she needs to use
salts. A cryptographic salt is a random string that is gen-
erated for one specific password and that serves as an ad-
ditional input to the hash function. Cryptographic libraries
for Java (and other languages) typically provide a number
of key-derivation functions that apply hashing algorithms in

a sensible way, incorporating salts and often iterating the
hashing multiple times to further harden the implementation
against brute-force attacks that might become computation-
ally feasible in the future. But how should Alice know? And
even if she did know, how could she ensure to at least use
those APIs correctly?

2.3 Problem Statement
We identify four separate, yet complementary, problems
from the scenarios presented above. These problems mo-
tivate the goals we address with OPENCCE’s design (Sec-
tion 3).

(1) Developers need to spend considerable time to learn
about cryptography. In our scenario, Alice needed to spend
valuable time to search and understand how cryptography
works and which algorithms to use to complete her tasks.
This presents a large overhead for developers whose main
expertise does not lie in the cryptography domain. At best,
Alice spends considerable amount of time learning about the
field and finds the right answers. At worst, Alice spends con-
siderable time, but her understanding of cryptography meth-
ods and algorithms is flawed, making her application vulner-
able to security attacks. Also, what about times in which a
security assessment of a cryptographic algorithm changes,
like in the cases of ECB or SHA-1, both of which were once
thought to be reasonably secure? Will Alice, and all other
developers for that matter, have to monitor cryptographic re-
search papers for the rest of their lives?

Goal 1: Reduce adoption barrier for non-crypto ex-
perts by guiding developers to find proper solutions
for their cryptography needs.

(2) Developers are often unsure about the best crypto-
graphic algorithm to use. As shown in Section 2.2, develop-
ers may have semantic misconceptions about the cryptogra-
phy domain. That is, they believe that a particular algorithm
or method is best suited for their application while in reality,
it might conceptually be wrong. Another technique might be
preferred or it might be completely insecure for that partic-
ular use. In practice, many developers still seem to believe
that a secret is properly encrypted as long as it is somehow
garbled.

Goal 2: Present cryptographic information using a
terminology developers understand and assist them
with chosing appropriate components and compo-
nent combinations from the design space.

(3) Developers misuse cryptographic APIs. Even after
establishing some basic knowledge about cryptography and
identifying the relevant APIs to use, developers often misuse
these APIs. In a recent study, Egele et al. [24] found that
88% of the Android apps in the Google Play store that use



cryptography misuse the APIs in at least one way.5 This
shows how prevalent this problem is. While cryptographic
libraries prevent developers from having to re-invent the
wheel, the developers’ lack of a deep understanding of the
field (in addition to poor documentation) is still a barrier to
the proper use of these APIs.

Goal 3: Support automatic generation of code that
uses cryptography securely.

(4) Code changes often break security. Even if code that
uses cryptography is correctly generated, developers still
need to integrate it into their applications. Without in-depth
knowledge of how the crypto libraries are supposed to be
used, this can lead to the introduction of new vulnerabilities.
Furthermore, as applications evolve, API misuses, and there-
fore security vulnerabilities, may arise during later mainte-
nance of the application. Adding new features might inad-
vertently break the security of existing features or the over-
all system due to poor understanding of the security model
or the implications of the various cryptographic APIs used
in the program. The mere information that a security issue
exists is still not sufficient. The developer is rather interested
in what change exactly broke security, what vulnerabilities
it may have introduced, and how the problem can be fixed.
For non-experts, these questions are hard to answer without
further assistance.

Goal 4: Support automatic validation of code that
uses cryptography. This applies to both the initially
generated integration code and to the context of
evolving host applications. Explain discovered issues
in a way understandable to the developer and assist
in resolving them.

3. OpenCCE
To achieve the four goals discussed above, we propose
OPENCCE, an interactive Eclipse plugin based on a soft-
ware product line with an underlying feature model [32].
The goal of OPENCCE is to allow the automatic compo-
sition of such features based on user requirements defined
as answers to high-level questions. This design accounts for
the fact that most developers are not cryptography experts
and are unlikely to be able to correctly pick and compose
components manually.

We organize and structure the whole product line as well
as all software artifacts involved in terms of features, units
of functionality in the system [6]. Each cryptographic algo-
rithm can be thought of as a feature (e.g., AES, RSA, SHA-1,
etc.). The relationships between the various features can then
be encoded in a feature model. Each feature in OPENCCE
maps to two different artifacts: the code with the API calls

5 Interestingly, especially for commercial apps with such flaws it is never-
theless quite common to advertise the usage of “military-grade cryptogra-
phy”.

Figure 2. OPENCCE components and workflow

corresponding to the respective algorithm and a usage pro-
tocol. The usage protocol describes the technical restrictions
on using the APIs for this algorithm (e.g., AES should not
be used with ECB) as well as proper uses of the API. These
restrictions are used to generate the static analyses that en-
sure the secure integration of the respective cryptographic
algorithm during program evolution.

Figure 2 shows an overview of how OPENCCE works.
The grey boxes show the main components of OPENCCE.
An application developer (bottom left) first uses the configu-
rator to specify her requirements. For example, OPENCCE
would ask the developer "Which one of the following tasks
would you like to accomplish?" The developer can then
choose from a list of predefined high-level tasks such as
store a password, securely transfer a file, securely store a
file, etc. More details can then be elicited from the developer
as required to further refine the selection to reach the right
combination of algorithms needed to perform the task. For
example the developer can also specify non-functional re-
quirements such as low memory usage. Such an abstraction
matches the developer’s understanding of the task she has
to accomplish without the need to understand cryptographic
jargon.

The selected features are then passed to the composer
that composes both the corresponding code files as well as
usage protocols. The result is a composed piece of code that
is added to the developer’s application code as well as a
composed usage protocol. This usage protocol is used by the
analysis engine to run the static analyses needed to ensure
correct integration.



1 // Key generation code
2 SecureRandom random = new SecureRandom();
3 byte[] salt = new byte[32];
4 random.nextBytes(salt);
5 PBEKeySpec spec = new PBEKeySpec(pwdChar, salt,

1000, 128);
6 SecretKeyFactory skf =

SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");
7 SecretKey key = skf.generateSecret(spec);
8
9 // Encryption code

10 Cipher cipher =
Cipher.getInstance("AES/CBC/PKCS5PADDING");

11 cipher.init(Cipher.ENCRYPT_MODE, key);
12 byte[] cipherText = cipher.doFinal(inputMsg);

Figure 3. Example of password-based encryption which re-
quires the composition of a key derivation algorithm and a
cipher

We now provide more details about the workflow outlined
above. Throughout our explanations, we will use the sce-
nario of a developer who wants to encrypt a message using a
password. To accomplish such a task, both a key derivation
algorithm and an encryption cipher are needed. The code
that should be generated to accomplish this task is shown
in Figure 3. This example can be seen as the correct version
of the motivating example from Figure 1 in which AES was
used in an insecure way.

3.1 Feature Model
In order to match the developer’s requirements to crypto-
graphic components, we need to capture the needed cryptog-
raphy domain knowledge in a feature model that can be au-
tomatically reasoned about. After performing some domain
analysis together with domain experts, we identify the fol-
lowing modeling notation requirements:

1. Support hierarchal structure. Encryption ciphers can be
symmetric or asymmetric. Yet, they share common prop-
erties such as a performance rating. Symmetric ciphers
in turn can operate on blocks or streams, but share the
requirement of a secret key. On a higher level, there are
different algorithm classes in cryptography such as en-
cryption ciphers versus digests (used for hashing).

2. Support non-Boolean values. For most algorithms, we
need to specify attributes such as key size, memory con-
sumption levels, etc.

3. Support reuse through some form of referencing. Many
tasks may need an encryption cipher, for example, and
we do not want to create a new feature representing a
cipher for each of these tasks. Instead, we want to have
a single feature representing the cipher and reference
it in the tasks. Similarly, on a finer granularity level,
any symmetric cipher should specify the key length(s)
it supports irrespective of whether it is a stream or block
cipher. Thus, it would be simpler if we can model this

as an attribute of symmetric ciphers in general and reuse
it (similar to inheritence) instead of redefining it in each
cipher.

4. Support modeling commonalities and variabilities. For
example, two hashing algorithms have the same purpose,
but may support different output lengths.

5. Support automated reasoning. We need to specify the
user’s requirements as constraints and get the algorithms
that satisfy these constraints as a solution. In addition to
basic reasoning of finding instances, we also need sup-
port for objective optimization. For example, if the appli-
cation runs on a resource-constrained device, the devel-
oper might want to optimize for memory consumption.
The developer may also have multiple (partially contra-
dictive) objectives such as minimum memory consump-
tion, but maximum performance.

The list above shows that traditional feature diagrams are
not enough for our purposes. To model cryptography com-
ponents, we need attribute-based feature models that also
support referencing. Such requirements bring us closer to
ontology modeling [3, 28] and meta-models (e.g., MOF [2]).
However, previous work has already shown that feature
models can be seen as views on ontologies (encoded as
class diagrams) [21]. Clafer [14] bridges the gap between
these different modeling notations by providing(class-based)
meta-modeling language with first-class support for feature
modeling. It provides an interesting middle-ground between
feature modeling that supports product configuration and
domain-specific languages (DSLs) that provide greater flexi-
bility in expressing things like attributes and references [44].
In general, Clafer provides a simple syntax and comes with
extensive tool support [5]. For a DSL, one would need to
build much of the tool support from scratch and train devel-
opers in using it. Furthermore, the expressiveness of Clafer
is sufficient for all cryptography algorithms we have encoun-
tered so far.

Figure 4 shows an example of a simplified model for ci-
phers, digests, and key generators in Clafer. Any concept
(feature, attribute, etc.) defined in Clafer is called a clafer.
This example exploits Clafer’s ability to have abstract def-
initions that can then be reused in subsequent definitions.
Lines 1– 7 define an abstract clafer called Algorithm that
has a name and a performance level, properties shared be-
tween all algorithms. The performance level varies between
1 and 4 according to the constraint on Line 4. Additionally,
the algorithm can be marked as secure or insecure through
the status clafer. Status is defined as an exclusive-or group
where only one value can be selected at a time, a common
feature modeling notation. The status clafer marks algo-
rithms that have theoretical or practical attacks against them
as insecure.

Lines 9–10 introduce another abstract clafer called Digest
that extends Algorithm. In other words, a digest (i.e., a



1 abstract Algorithm
2 name -> string
3 performance -> integer //Levels 1 - 4 (4 fastest)
4 [performance >=1 && performance <= 4]
5 xor status
6 secure
7 insecure
8
9 abstract Digest : Algorithm

10 outputSize -> integer //in bits
11 }
12
13 abstract KeyDerivationAlgorithm : Algorithm
14
15 abstract Cipher : Algorithm
16 memory -> integer //Levels 1 - 4 (1 lowest)
17 [memory >=1 && memory <= 4]
18 }
19
20 abstract SymmetricCipher : Cipher
21 keySize -> integer
22
23 abstract SymmetricBlockCipher : SymmetricCipher
24 blockSize -> integer
25
26 abstract Task
27 name -> string
28 }
29
30 Ciphers
31 AES128 : SymmetricBlockCipher
32 [ name = "AES with 128bit key" ]
33 [ performance = 3 ]
34 [ secure ]
35 [ memory = 1 ]
36 [ keySize = 128 ]
37 [ blockSize = 128 ]
38
39 AES256 : SymmetricBlockCipher
40 [ name = "AES with 256bit key"]
41 [ performance = 3 ]
42 [ secure ]
43 [ memory = 1 ]
44 [ keySize = 256 ]
45 [ blockSize = 128 ]

46 DES: SymmetricBlockCipher
47 [ name = "DES"]
48 [ performance = 2 ]
49 [ memory = 2 ]
50 [ secure ]
51 [ keySize = 56 ]
52 [ blockSize = 64 ]
53
54 DigestAlgorithms
55 md5: Digest
56 [name = "MD5"]
57 [performance = 4]
58 [insecure]
59 [outputSize = 128]
60
61 sha_1: Digest
62 [name = "SHA-1"]
63 [performance = 4]
64 [insecure]
65 [outputSize = 160]
66
67 sha_256: Digest
68 [name = "SHA-256"]
69 [outputSize = 256 ]
70 [secure]
71 [performance = 2]
72
73 KeyDerivationAlgorithms
74 pbkdf : KeyDerivationAlgorithm
75 [name = "PBKDF"]
76 [performance = 2]
77 [secure]
78 }
79
80 PasswordBasedEncryption : Task
81 [name = "Encrypt data based on a password"]
82 kda -> KeyDerivationAlgorithm
83 digest -> Digest
84 cipher -> SymmetricBlockCipher
85 [cipher.keySize > 128]

Figure 4. Clafer model for sample hash functions ciphers and key derivation algorithms. Model also includes a password-
based encryption task

hash function) is a type of algorithm. It includes all proper-
ties from Algorithm, but also adds more specific properties
such as outputSize. The outputSize property determines
the fixed length of the output produced by this hash func-
tion, measured in bits. Generally, the higher the number, the
harder it is to conduct a brute force attack against the hash
function. Similarly, Line 13 introduces an abstract Clafer
called KeyDerivationAlgorithm. In our example, it does
not have any additional properties. Lines 15–24 define the
different types of ciphers and the additional properties each
type might add to Algorithm. Lines 26–27 define an abstract
clafer called Task that we use to represent a cryptography-
related task (e.g., secure password storage, email transmis-
sion, data encryption, etc.).

Lines 30–71 define several instances of Cipher and
Digest. These are the actual available algorithms. Each of
these concrete algorithms are just grouped for convenience.
A concrete instance assigns values to the properties defined
in the abstract clafer. For example, md5 sets the performance

property to 4 and the outputSize to 128, leaving no further
variability for these properties. Similarly, Lines 73–77 show
one instance of a key-derivation algorithm. Note here that,
as opposed to regular feature modeling, we have to create
actual instances and not just rely on generating all possi-
ble instances from Digest or Cipher, simply because some
combinations do not exist. For example, even though a ci-
pher with a key of 100 bits is a valid instance, there is no
corresponding algorithm that supports that.

A task that developers can later choose through the con-
figurator is represented by a concrete clafer derived from the
abstract clafer Task. Line 80 defines a password-based en-
cryption task. Such a task needs a key derivation algorithm
(Line 82), a digest to use with the key derivation algorithm
(Line 83), and a cipher to perform the actual encryption
(Line 84). At the moment, we are using basic tasks such as
store a password, encrypt data based on a password, etc.
We identified these tasks through a preliminary evaluation
of the top 100 Java cryptography-related questions (sorted



1 String CONS =
2 "<javax.crypto.spec.PBEKEYSpec: void

<init>(char[],byte[],int,int)>";
3
4 return UsageProtocolAPI
5 .atCallTo(CONS)
6 .ifParameter(2, p -> p < 500)
7 .reportError("Not enough iterations");

Figure 5. TSJ4 Specification for Checking PBEKeySpec
Iteration Count

by view count and score) asked on StackOverflow. We are
currently preparing a questionnaire to extract more informa-
tion on the concrete problems faced by these developers and
the causes of requesting help from the community. In par-
allel, we are currently conducting an empirical study on the
uses of cryptography in real-world application code to find
more common tasks that OPENCCE should support.

We have already modeled several ciphers, digests, and
key derivation functions from the cryptography domain.
These include AES, DES, MD5, SH1, SHA256, and PBKDF.
We are currently modeling the common JCE algorithms that
all providers should support. However, we are constantly
extending our models to encompass more algorithms and li-
braries. To make sure that our Clafer model is correct, we are
spending a considerable amount of effort on domain analy-
sis to gather all requirements. An ongoing collaboration with
cryptographic expert researchers ensures the correctness of
the resulting definitions. While we are initially modeling
the existing algorithms ourselves after consulting with do-
main experts, developers of cryptographic components can
themselves add new components to OPENCCE in the fu-
ture. Such components can then be offered to application
developers as solutions to the existing tasks. For instance, if
a cryptography expert provides a new encryption algorithm
that uses specific hardware, this algorithm will now appear
in the list of solutions offered to the developer as long as it
satisfies the given constraints.

3.2 Usage Protocols
A usage protocol specifies constraints on the APIs them-
selves. For example, it can specify that a salt must be cre-
ated using javax.crypto.SecureRandom (instead of an in-
secure mechanism such as java.util.Random) or that ECB
mode should not be used with AES. It can also enforce meth-
ods to be called in a certain order. For example, a random salt
must be generated before a password-based hash is created.

We identify the following requirements for the usage
protocol notation.

1. Support variation in API-usage protocols. The public key
of an asymmetric cipher may be based on constant key
material. On the other hand, a symmetric cipher must be
configured with a secret key that cannot be guessed, and
therefore must be based on random values or values only

1 String CONS =
2 "<javax.crypto.Cipher: javax.crypto.Cipher

getInstance(java.lang.String)>";
3
4 return UsageProtocolAPI
5 .atCallTo(CONS)
6 .ifParameter(0, p -> !p.contains("/") ||

p.contains("/ECB"))
7 .reportError("Insecure block cipher mode");

Figure 6. TSJ4 Specification for Checking Block Cipher
Mode

known to trusted entities. The usage protocol must thus
allow for differences between different types of ciphers.

2. Support specification inheritance Some APIs may share
parts of their specification: both the Data Encryption
Standard (DES) and AES are symmetric ciphers and
thus share the requirement of a non-guessable secret key
based on random values. Ideally, one does not need to
duplicate such basic specifications, but can share them
with the means of a hierarchical model in which concrete
specifications can inherit properties from abstract ones.

3. Human-readable and machine-processable. The usage
protocol language should be simple enough such that de-
velopers of new cryptographic algorithms can write the
specifications themselves. Such usability also includes
the ability to integrate the language into development en-
vironments with syntax highlighting and code comple-
tion. At the same time, it should be machine-processable
such that static analyses can be automatically derived
from it.

To cater for these requirements, we use TS4J [16] to
encode the usage protocols. TS4J uses the idea of fluent
interfaces to build a domain specific language (DSL), in
Java, with an underlying typestate analysis. Fluent interfaces
are also referred to as internal DSLs since they are imple-
mented purely through careful engineering of the host lan-
guage APIs. They do not require any syntactic or seman-
tic extensions to their respective host language. This allows
full re-use of the host language development tools and com-
pilers. For example, TS4J exploits the Java compiler type
checker to enforce the well-formedness of the usage proto-
col specification.

Figure 5 shows a TS4J definition of the usage protocol
restriction PBEKeySpec must be used with at least 500 iter-
ations. This tells the TSJ4 engine that it should conduct a
check at every call site of the Cipher class constructor. If the
value passed in as the third parameter (zero-based indexing)
evaluates the given lambda predicate to true, it shall report an
error to the developer. Note that this definition is declarative:
It does not specify how the static analysis shall be conducted
or how the value of the third parameter shall be obtained. It
only defines the cases in which the analysis shall report an
error to the developer.



Figure 6 shows how the same principle can be applied
to prevent the insecure ECB block cipher mode from be-
ing used. Again, a parameter check is applied to every call
site of a certain method, this time only with a more complex
predicate. We have extended TS4J to support such parameter
checks as they are not supported in its original implementa-
tion. We have compiled a list of similar needed extensions
(e.g., predicates on field values) to TS4J that we are currently
in the process of implementing.

While a Java developer can easily understand the TS4J
notation, cryptographic providers are not necessarily ex-
pert Java developers. Since our goal is to allow crypto-
graphic providers to add new primitives and algorithms to
OPENCCE, we plan to develop a more higher-level domain
specific language they can use to specify such usage proto-
cols. Such a language can then translate to TS4J.

3.3 Configurator
During configuration, the developer selects one of the tasks
offered by Clafer model. The configurator uses the Clafer
instance generator (ClaferIG)6 to find model instances that
can be used to accomplish the selected task. Instances are
possible solutions to the model that respect all constraints.
Essentially, the instance generator tries to assign a concrete
value to any non-abstract clafer in the model.

Referring back to the Clafer model example shown
in Figure 4, let us ignore the last line of the example
(Line 85) for a moment and look at the instances that
ClaferIG would generate. In this case, ClaferIG tries to as-
sign concrete values to kda, digest, and cipher or, in other
words, tell us what are the possible algorithms the devel-
oper can use to do the password-based encryption. ClaferIG
generates 9 instances that combine the various available key
derivation, digest, and cipher algorithms for the given task.

Through the configurator, the developer can also specify
additional requirements. Assume that the developer had a re-
quirement that the keys to use for encryption must be greater
than 128 bits in length. After eliciting this requirement from
the developer, we can add the constraint shown on Line 85
to further restrict the model. In this case, only 3 instances
would be generated because instances containing AES_128
or DES would be removed since their key length does not sat-
isfy the specified constraint. In addition to instance genera-
tion, Clafer also supports multi-objective optimization [38].
This allows the user to, for instance, specify that they want
instances that maximize both performance and security.

In some cases, there might not be a valid combination of
features that satisfy the user requirements. For example, if
the user specifies that they want a cipher key size greater
than 256 bits, no valid instances can be generated for the
password-based encryption task shown in Figure 4 since no
such cipher exists in the model. OPENCCE is faced with the

6 https://github.com/gsdlab/claferIG

1 public class KeyDeriv {
2 private String algorithm = "";
3
4 public SecretKey getKey(String pwd) throws ... {
5 SecureRandom r = new SecureRandom();
6 byte[] salt = new byte[32];
7 r.nextBytes(salt);
8
9 PBEKeySpec spec = new

PBEKeySpec(pwd.toCharArray(), salt, 1000,
128);

10 SecretKeyFactory skf =
SecretKeyFactory.getInstance(algorithm);

11 return skf.generateSecret(spec);
12 }
13 }

Figure 7. Generic key derivation code

1 public class KeyDeriv {
2 private String algorithm = "PBKDF2WithHmacSHA1";
3
4 public SecretKey getKey(String pwd) throws ... {
5 return original(pwd);
6 }
7 }

Figure 8. Refining the generic key derivation code in Fig-
ure 7 using FeatureHouse to use the PBKDF2 algorithm

challenge to detect such inconsistencies and report them to
the developer in an understandable terminology.

In the background, ClaferIG uses a SAT solver to gener-
ate the instances that satisfy the given constraints7. We are
currently developing the configurator as an Eclipse plugin
and exploring the tradeoffs between a filtering approach and
a step-wise approach.

The filtering approach is currently used in the online
Clafer configurator8 where all valid instances of a given
model are generated. Such instances are then filtered based
on the constraints enforced by the user selection. The down-
side to such a solution is that if the configuration space is
large, an extremely large number of instances would be gen-
erated, which is time-consuming.

In a step-wise approach (which is our current design ap-
proach), we present only valid selections to the user at each
step during the configuration process. The idea is that only
correct value ranges will be presented to the user (e.g., val-
ues 1 to 4 for performance levels) and that only algorithms
satisfying the current set of constraints are presented in each
subsequent configuration step. This is as opposed to accu-
mulating all user requirements and trying to satisfy them at
the end of the configuration process. However, the challenge
here is to minimize the number of intermediate calls to the
SAT solver.

7 Clafer relies on Alloy [31] or Choco [1] as backend solvers.
8 http://www.clafer.org/p/software.html

http://www.clafer.org/p/software.html


1 public class KeyDeriv {
2 private String algorithm = "PBKDF2WithHmacSHA1";
3
4 private SecretKey

getKey__wrappee__KeyDerivation(String pwd)
throws ... {

5 SecureRandom r = new SecureRandom();
6 byte[] salt = new byte[32];
7 r.nextBytes(salt);
8
9 PBEKeySpec spec = new

PBEKeySpec(pwd.toCharArray(), salt, 1000,
128);

10 SecretKeyFactory skf =
SecretKeyFactory.getInstance(algorithm);

11 return skf.generateSecret(spec);
12 }
13
14 public SecretKey getKey(String pwd) throws ... {
15 return getKey__wrappee__KeyDerivation(pwd);
16 }
17 }

Figure 9. Resulting composition of Figure 7 and Figure 8

3.4 Composer
Now that the right features (i.e., algorithms) needed to per-
form the task have been selected by the configurator, we
need to compose the corresponding artifacts to create a so-
lution. Recall that a feature maps to two types of artifacts:
code files and usage protocols. Even though Clafer provides
us with the necessary modeling support, it is not a feature-
oriented framework and thus, provides no support for map-
ping or composition of artifacts. We use FeatureIDE [43], an
open-source development framework supporting all phases
of feature-oriented development [7], to provide such a sup-
port. However, FeatureIDE uses its own underlying sim-
ple, feature-modeling notation that does not fully support
attributed feature models9. On the other hand, FeatureIDE
provides the ability to map features to any artifact type (both
code and non-code) and provides several composition en-
gines (e.g., AHEAD [11] and FeatureHouse [8]). To make
the best out of both worlds, we are currently working on in-
tegrating Clafer into FeatureIDE.

To compose different artifacts, we use FeatureHouse, an
open-source framework for software-artifact composition by
means of superimposition [8]. We first discuss the composi-
tion of the Java code followed by that of the usage protocols.

Java Code. FeatureIDE already supports mapping features
to Java files and FeatureHouse already supports compos-
ing Java files. We discuss how we use FeatureHouse for
our password-based encryption example. To avoid clutter-
ing the code with details irrelevant to this example, we only
show parts of the example that illustrate how composition
works. Figure 7 shows code for a generic key derivation al-

9 There are recent early-stage prototypes providing such support, but none
are fully developed yet [30, 35]

gorithm where the algorithm field that is passed as a param-
eter to the SecretFactory is a variability point determining
which algorithm will be used. Figure 8 shows the code for
a specific key derivation function, PBKDF2, that refines the
code in Figure 7 by giving a concrete value to algorithm.
If the user selections result in using PBKDF2, then the code
from Figure 7 and Figure 8 will be composed using super-
imposition, resulting in the code shown in Figure 9.

The example above illustrates a couple of limitations that
we will need to overcome. First, the composed code is still
in the form of a whole class. This means that this gener-
ated Java class would be added to the user code, but the user
would still need to call the getKey(..) method, in this ex-
ample, from within her code. Even if this call is synthesized
automatically, it still clutters the code structure through un-
necessary extra classes. Ideally, we want to generate all the
needed code (in the form of a code snippet for example) di-
rectly into the application at the developer’s current cursor
position. One option is to have features correspond to code
snippets instead of whole Java classes and that we change the
level of composition granularity in FeatureHouse to be at the
statement level. FeatureHouse currently relies on structure
names (e.g., field or method names) for the superimposition.
Working at the statement level requires coming up with some
labeling scheme that is difficult to determine in advance.

The second limitation is that there are actually additional
“variability points” in the code shown. For example, the
number of iterations and output size for the generated key
can be selected by the user. If we place such options in the
feature model, then it means that we have to map the user
selections into the code. In other words, the code written
for each feature should be parameterized such that some
values are read from the feature model and can be changed
at composition time.

We have currently implemented some preliminary exam-
ples using FeatureIDE, but are still investigating the best way
to solve the two problems above.

Usage Protocols. Composition in FeatureHouse is not re-
stricted to code files. In fact, FeatureHouse is designed
to be language-independent and adapts many ideas from
AHEAD [11] that provides algebraic transformations for
composition that apply to any type of artifact. To add sup-
port for a new language in FeatureHouse, a grammar for the
language needs to be provided as well as the rules to use
for composition. Since TS4J uses Java with only some mi-
nor extensions to the language, providing such a grammar
is straightforward. However, the composition of rules poses
some challenges.

A simple approach would be to just append all the rules
corresponding to all the feature selections. This is based on
the reasoning that even if key derivation is used with encryp-
tion, for example, the individual rules of each still applies.
However, it might be the case that a set of extra rules must
be added to account for any feature interactions. An inter-



esting point, though, is that the usage rules themselves can
be used to account for feature interactions between the code
files. Since the usage protocols enforce certain ordering con-
straints on method calls, they can be used as feature interac-
tions resolutions when two features have to be composed in
a certain order (e.g., the key generation must happen before
the encryption in the code). We are still in early stages of
using TS4J in our context, and have, therefore, still not at-
tempted designing the appropriate composition rules for it
within FeatureHouse.

3.5 Analysis Engine
After the usage protocols of the features have been com-
posed, the respective static analyses must be generated and
executed. Since rules written in TS4J directly compile into
static analyses, this step is a matter of simply executing the
composed rule code. No further transformations and no spe-
cialized execution environment is required. TS4J is already
implemented as an Eclipse plugin that can highlight the lo-
cation of the errors and show the error messages to the devel-
oper. Developers already know this style of error reporting
from normal Java syntax errors and are comfortable using it.
Together with proper error messages and examples of valid
crypto API usage, this presentation bridges the gap between
cryptographic problems or usage protocol violations on one
side and the developer’s code on the other side.

The errors presented to the user can be related to incor-
rect parameters or incorrect sequences of calls. Accepting
an SSL certificate and using its public key for signature ver-
ification without previously checking the certificate expiry
date is one example of the latter. Interestingly, a misuse of
exactly this nature has lead to a vulnerability that allowed re-
mote code execution in the auto-updating mechanism of the
official German ID card app provided by the federal gov-
ernment [29]. The possibility to enforce correct usage se-
quences makes the analysis more powerful than existing ap-
proaches such as FindBugs [9] that only checks for misuse
patterns, effectively missing not yet discovered API misuses.
A TS4J specification can, for instance, enforce a typestate
property on the SSL implementation so that it is only al-
lowed to enter the signature check method if the key check
method has been called before and has not returned an error.

In general, the static analysis based on the usage protocols
must be executed as the code evolves. We plan to design
an incremental analysis based on TS4J that would run after
every incremental compilation performed by Eclipse, giving
immediate feedback to the developer. This is in line with
Eclipse’s normal incremental compiler and its Java syntax
error reporting.

4. Evaluation
Once we have addressed all the remaining open challenges
discussed above, we plan to evaluate OpenCCE on three
fronts, as follows.

We will evaluate the ease of use of OpenCCE through
a controlled experiment where two groups of developers
would be given the same tasks, but only one of them would
use OpenCCE during development. To evaluate usability, we
will observe and record their usage and actions during devel-
opment as well as interview them about their experience. To
evaluate whether OPENCCE improves secure integration,
we will also compare the number and severity of the vulner-
abilities present in the code developed by both user groups.
We will use a cryptography expert to evaluate such vulner-
abilities. Vulnerabilities arising both from domain miscon-
ceptions (picking the wrong components or combining them
incorrectly) and from implementation mistakes will be an-
alyzed. Ideally, the average severity and number of vulner-
abilities in the applications developed with OPENCCE will
be much lower than in the control control group who did not
use OPENCCE.

We will also evaluate our generated code and analysis.
Evaluating the generated code can be two-fold as well. First,
we can get feedback from cryptographic experts on the qual-
ity of the generated code. Second, we can also run existing
analyses proposed in the literature on it to ensure it does not
contain vulnerabilities. Since OPENCCE will also provide
own analyses to check for the correct integration of the cryp-
tographic components, we will also run these analyses on the
generated code. This of course means that our analysis itself
must be correct.

We will evaluate our analysis on a prepared test set which
contains valid and invalid code compared to the specified us-
age patterns. Additionally, we can run our analysis on code
repositories such as Android apps in the Google Play store
or Java code using cryptography on GitHub. (Note that our
analysis operates on the bytecode, allowing us to also find
misuses in closed-source applications.) That way, we can
also study the results of our analysis in less controlled set-
tings. In the long term, the option to publish OpenCCE as
an official Eclipse project can also provide rather large-scale
evaluation based on implicit and explicit user feedback. Ap-
propriate discussions with the Eclipse foundation are already
underway.

5. Related Work
In this section, we explain how our proposed ideas relate
to existing and ongoing work in the domains of Software
Engineering and Program Analysis.

5.1 Misuse of Cryptographic Components
Our focus is on benign misuses of cryptography rather than
intentional malicious code. Many studies have analyzed
the usability of cryptography. Clark and Goodspeed [19]
and Whitten and Tygar [45] explore misuses of cryptogra-
phy components from the end-user’s point of view. Their
focus is on the usability of cryptographic systems which
are targeted at end-users, but require far more cryptogra-



phy knowledge than what can be expected from an ordinary
user. Others analyze misuses of cryptography APIs by ap-
plication developers. For example, Lazar et al. [33] show
that over 83% of the vulnerabilities they analyzed from the
CVE database were due to misuses of cryptography libraries
while only 17% were caused by implementation bugs in the
cryptography libraries themselves.

Similarly, an earlier study by Georgiev et al. [27] showed
that many applications misuse SSL certificate validation
leading to sensitive information (e.g., credit card data) being
leaked. They found that even major web applications such as
Amazon and PayPal were vulnerable to these mistakes. The
authors include a list of recommendations for application
developers (e.g., do not use the SSL library’s defaults) and
for SSL library developers (e.g., make the semantics of APIs
more explicit). However, the authors also realize that these
are short-term fixes and advocate presenting developers with
higher-level abstractions and finding ways to verify that the
application does not violate the semantics of the API – both
of which are achieved by OPENCCE’s design.

5.2 Bug-Finding Tools
There has been an ongoing effort to develop bug-finding
tools that focus on misuses of cryptographic APIs. Such
efforts often target mobile applications since smart phones
and tablets hold more private user data than other devices.
In particular, the Android platform has attracted the atten-
tion of many research efforts in the past due to its popular-
ity and openness. Fahl et al. [25] present MALLODROID,
a static analysis tool that finds misuses of the SSL API in
Android applications. Egele et al. [24] developed CRYP-
TOLINT, a static analysis tool that checks Android ap-
plications for common cryptographic misuses: hard-coded
seeds, using AES in the non-secure ECB mode, and using
weak password-based encryption. Ball et. al. [10] use bi-
nary decision diagrams (BDDs) to statically detect misuse
of Windows device driver APIs. They convert C programs
to Boolean programs and then apply counterexample-guided
abstraction refinement to automatically detect whether a pro-
gram is correct with respect to an API usage rule or find a
true error.

Flanagan et al. [26] have proposed Extended Static
Checking for Java to check programs for compliance with
high-level design decisions by means of code annotations
and automated theorem proving which may also be suitable
for enforcing certain API usage protocols. However, code
annotations must not place too much of a burden on the ap-
plication developer or implementer of a new cryptographic
algorithm. Ideally, the specification is as abstract and short
as possible.

Typestate analysis attempts to find API-protocol viola-
tions. Analysis can be either performed ahead of time, in a
compiler’s tye system [13, 42] or after the fact, using static
analysis [15, 17]. We use the typestate analysis implemented
in TS4J [16] in OPENCCE. One problem that many of those

approaches face is the lack of available property specifica-
tions. Property-inference techniques can address this prob-
lem in some situations by inferring likely valid properties,
for instance from program runs [39, 41].

5.3 Formal Software Verification
In addition to program analysis techniques, formal ver-
ification has also been used to detect vulnerabilities in
cryptography and security-related protocols. Mitchell et
al. [36] introduce Murϕ, a general-purpose state enumer-
ation tool that analyzes cryptographic and security-related
protocols. Microsoft Crypto Verification Kit [12] is another
verification-based tool that ensures the correct implementa-
tion of TLS 1.0.

Protocol Composition Logic (PCL) by Datta et. al. [23]
is a logic for proving security properties of complex proto-
cols. It allows properties of inidividual steps to be combined
to prove properties of the overall system. Such approaches
are relevant as OPENCCE must also combine several cryp-
tographic components to create a secure solution based on
the user’s requirements while only having specifications of
the individual components.

While formal verification offers guarantees on the sound-
ness of the result, full soundness is often too strict for real-
world programs [34] due to an increased number of false
positives. Therefore, it is not suitable to use in OPENCCE.

5.4 Improving Crytographic API Documentation
Cairns and Steel [18] argue for the need to make using cryp-
tographic APIs easier. However, they mainly focus on de-
signing the APIs themselves to be more useful and intuitive
to use. On the other hand, OPENCCE uses automated tech-
niques to support currently available APIs by suggesting cor-
rect usage patterns.

6. Conclusion
As cryptography becomes increasingly important to protect
the vast amount of user data available in modern time, one
needs to ensure that application developers are able to use it
correctly. To address this need, we combine techniques and
concepts from both software engineering and program anal-
ysis. Specifically, we argue that configuring and composing
cryptographic components can be seen as creating a prod-
uct from a software product line. To facilitate composition
and check for correct integration, we encapsulate cryptog-
raphy domain knowledge in a feature model supported by a
program analysis component. This approach, which is at the
core of the OPENCCE Eclipse plugin, is a practical solution
to the misuse of cryptographic APIs. Non-expert developers
should be able to secure sensitive data in their applications
without intricate knowledge of cryptography.

We use our feature model to capture related domain
knowledge and use it to guide the developer through high-
level questions that are similar to how she thinks about the



problem. Secure code corresponding to the user’s require-
ments is then generated automatically. Since the developer
may change the generated code and how it is integrated with
her application, we also apply static-analysis techniques to
ensure the code complies with the usage specifications of
each component. By alleviating the responsibility of secure
integration of cryptographic software off application devel-
opers, misuse of APIs would be reduced leading to a more
secure world for all end users.
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