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ABSTRACT
Intelligent code completion recommends relevant code to de-
velopers by comparing the editor content to code patterns
extracted by analyzing large repositories. However, with the
vast amount of data available in such repositories, scalability
of the recommender system becomes an issue. We propose
using Boolean Matrix Factorization (BMF) as a clustering
technique for analyzing code in order to improve scalability
of the underlying models. We compare model size, inference
speed, and prediction quality of an intelligent method call
completion engine built on top of canopy clustering versus
one built on top of BMF. Our results show that BMF re-
duces model size up to 80% and increases inference speed up
to 78%, without significant change in prediction quality.

CCS Concepts
•Software and its engineering → Software libraries
and repositories; •Information systems → Data an-
alytics; Data mining; •Computing methodologies →
Factorization methods;

Keywords
Intelligent Method Call Completion, Analytics of code
repositories, Boolean Matrix Factorization, Scalability

1. INTRODUCTION
Code completion is incorporated in many modern In-

tegrated Development Environments (IDEs). Specifically,
method call completion is heavily used by developers to de-
cide which method to call next given the current context [13].
While traditional code completion systems only exploit the
type system and propose an alphabetically sorted list of all
possible methods, intelligent code completion systems pro-
pose relevant method calls by comparing the editor content
to code patterns extracted by analyzing large repositories.
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To be accurate, and thus useful, intelligent code comple-
tion systems need to mine large numbers of code repositories
to increase the probability that the detected patterns are in-
deed relevant for developers. In our previous work [16], we
found that this results in increased model sizes for the rec-
ommender systems. Large model sizes require more main
memory to be loaded and slow down querying time, limiting
the usefulness of recommender systems in practice.

In this paper, we investigate Boolean Matrix Factorization
(BMF) as a means to create smaller models. BMF is a well-
known machine learning approach used to represent big data
sets through smaller dimensions, while at the same time re-
moving noise [12]. Matrix Factorization (MF) has already
been shown to perform well for recommender systems used
by Amazon and Netflix [6]. We want to bring the same bene-
fits to recommender systems for software engineering to deal
with increasing amounts of data. Specifically, we investigate
if BMF can be used to improve analytics of code repositories
in the context of intelligent method call completion.

To evaluate the effect of using BMF, we use the
MDL4BMF algorithm developed by Miettinen et al. [12],
which automatically calculates the factorization rank (num-
ber of clusters in clustering terminology) by using the Min-
imum Description Length (MDL) principle. However, we
adapt MDL4BMF to the code completion problem by im-
plementing a heuristic on top of it (see Section 3.1).

We evaluate our approach on the SWT framework APIs
in the code of 3,186 plug-ins obtained from the Eclipse Ke-
pler update site. We compare prediction quality, model size,
and inference speed of BMF to those of our previous intelli-
gent method call completion recommender that uses canopy
clustering. Our evaluations shows that BMF reduces the
model size by up to 80% and makes inference speed up to
78% faster, with no significant effect on prediction quality.
Based on these results, we conclude that BMF is promis-
ing in the context of intelligent method call completion and
speculate that other software engineering applications that
rely on large amounts of input data, may also benefit from
such an approach. To summarize, our contributions are:
• Application of BMF in the context of intelligent

method call completion to analyze code repositories.
• Implementation of a heuristic on top of BMF to further

improve pattern detection for method call completion.
• Integration of BMF into an existing intelligent code

completion engine.
• Investigation of the effect of BMF on scalability of rec-

ommendation models.
• A systematic empirical evaluation of the effect of using

BMF for intelligent method call completion.
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class C implements J {
  @Override
  void n(T ou3) {
    ou3.m2();
    ou3.m3();
  }
}

class A implements I {
  @Override
  void m(T ou1) {
    ou1.m1();
    ou1.m2();
  }
}

class B implements J {
  @Override
  void m(T ou2) {
    ou2.m1();
    ou2.m2();
    ou2.m4();
  }
}

class D implements K {
  @Override
  void o(T ou4) {
    ou4.m4;
  }
}

Fig. 2. Code snippet examples from code repositories

TABLE I. OBJECT USAGES REPRESENTED IN THE FEATURE SPACE
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ou1 1 0 0 1 1 0 0
ou2 0 1 0 1 1 0 1
ou3 0 1 0 0 1 1 0
ou4 0 0 1 0 0 0 1
(ou5) 1 0 0 1 1 0 0

A. Data representation

The input data for PBN is generated by statically analyzing
code repositories for example usages of object types that
belong to frameworks or libraries. Examples that are found
are represented as an object usage. An object usage is an
abstract representation of a single instance of a specific API
type and contains different features that describe it. Apart
from the invoked method calls, additional features are extracted
that describe the surrounding code in which the instance was
used. This includes the enclosing class and method context,
the definition site of an object usage, and all parameter call
sites.

In Figure 2, we show five code snippets that we will use
as a running example throughout the paper. For all examples,
we are collecting information for the object type T. The first
object usage ou1 has a method context I.m1and two receiver
call sites m1 and m2. Thus, ou1 can be described by these
three features. Similar information can be gathered for the
other snippets.

All code snippets are transformed into the processable
format shown in Table I in two steps. First, all features are
aggregated and stored in a feature set. This set spans the
available feature space of all possible feature combinations. In
our example, these are the vertical labels in the table. Second,
each object usage is transformed into a binary vector in the
feature space (as defined by the feature set). The dimension
of each feature contained in the object usage is set to 1, all
others are set to 0. Each row in the table represents a single
object usage from the examples.

Using the first declaration as the context is a generalization
that might result in duplication. For example, object usage
ou5 (not shown in Figure 2) might be observed in a different
implementation of I, say A2. If the same combination of
methods are invoked, it is considered as the same object usage
as ou1, because it is represented with the same binary vector.
Proksch et al. [6] do not merge such object usages, but keep
them as separate rows in the table. In Section ??, we discuss
how we merge such object usages.

1The method context always points to the type in the hierarchy in which
the method signature was defined first. Therefore, it is I.m and not A.m.
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Fig. 3. PBN inference engine as a result of canopy clustering of the object
usages in Figure 2 and represented by the matrix in Table I

Note that similar to Proksch et al. [6], we consider all
feature kinds (method calls, method context, class context,
definition site, receiver call site, and parameter call site) in
our work. However, all examples in this paper are reduced
to method calls and method context to make them more
comprehensible.

B. Clustering the input data

The matrix generated in the previous step is passed to
the clustering component in the PBN pipeline in order to
find similar vectors that can be grouped into patterns (see
Figure 1). A pattern has a defined probability and also contains
a probability between 0 and 1 for every feature in the feature
space. For example, consider that the object usages ou1, ou2,
and ou5 end up in the same cluster since they are similar. The
resulting pattern p1 has the probability 0.6 because it contains
3 out of a total of 5 object usages. The probability of each
feature in the pattern is determined by the fraction of object
usages that possess this feature, e.g. 2

3 of the object usages in
this cluster were observed in context I.m. The complete vector
that describes the probabilities of all dimensions in the feature
space of pattern p1 is (0.67,0.33,0,1,1,0,0.33) .

The clustering component is exchangeable and represents
the extension point that is addressed in this work. The original
PBN publication used a variant of canopy clustering that
followed a simple algorithm:

1) Randomly select an object usage.
2) Calculate the distance to all remaining object usages.
3) Select all object usages closer than a specified threshold.
4) Merge these into a centroid that represents the cluster.
5) Remove all selected object usages.
6) Repeat steps 1-5 until no object usages are left.

While merging all object usages in step 4, all binary
information is converted to probabilities like those shown
above. The authors applied smoothing to omit extreme values

class C implements J {
  @Override
  void n(T ou3) {
    ou3.m2();
    ou3.m3();
  }
}

class A implements I {
  @Override
  void m(T ou1) {
    ou1.m1();
    ou1.m2();
  }
}

class B implements J {
  @Override
  void m(T ou2) {
    ou2.m1();
    ou2.m2();
    ou2.m4();
  }
}

class D implements K {
  @Override
  void o(T ou4) {
    ou4.m4;
  }
}

Fig. 2. Code snippet examples from code repositories
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A. Data representation

The input data for PBN is generated by statically analyzing
code repositories for example usages of object types that
belong to frameworks or libraries. Examples that are found
are represented as an object usage. An object usage is an
abstract representation of a single instance of a specific API
type and contains different features that describe it. Apart
from the invoked method calls, additional features are extracted
that describe the surrounding code in which the instance was
used. This includes the enclosing class and method context,
the definition site of an object usage, and all parameter call
sites.

In Figure 2, we show five code snippets that we will use
as a running example throughout the paper. For all examples,
we are collecting information for the object type T. The first
object usage ou1 has a method context I.m1and two receiver
call sites m1 and m2. Thus, ou1 can be described by these
three features. Similar information can be gathered for the
other snippets.

All code snippets are transformed into the processable
format shown in Table I in two steps. First, all features are
aggregated and stored in a feature set. This set spans the
available feature space of all possible feature combinations. In
our example, these are the vertical labels in the table. Second,
each object usage is transformed into a binary vector in the
feature space (as defined by the feature set). The dimension
of each feature contained in the object usage is set to 1, all
others are set to 0. Each row in the table represents a single
object usage from the examples.

Using the first declaration as the context is a generalization
that might result in duplication. For example, object usage
ou5 (not shown in Figure 2) might be observed in a different
implementation of I, say A2. If the same combination of
methods are invoked, it is considered as the same object usage
as ou1, because it is represented with the same binary vector.
Proksch et al. [6] do not merge such object usages, but keep
them as separate rows in the table. In Section ??, we discuss
how we merge such object usages.

1The method context always points to the type in the hierarchy in which
the method signature was defined first. Therefore, it is I.m and not A.m.
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Fig. 3. PBN inference engine as a result of canopy clustering of the object
usages in Figure 2 and represented by the matrix in Table I

Note that similar to Proksch et al. [6], we consider all
feature kinds (method calls, method context, class context,
definition site, receiver call site, and parameter call site) in
our work. However, all examples in this paper are reduced
to method calls and method context to make them more
comprehensible.

B. Clustering the input data

The matrix generated in the previous step is passed to
the clustering component in the PBN pipeline in order to
find similar vectors that can be grouped into patterns (see
Figure 1). A pattern has a defined probability and also contains
a probability between 0 and 1 for every feature in the feature
space. For example, consider that the object usages ou1, ou2,
and ou5 end up in the same cluster since they are similar. The
resulting pattern p1 has the probability 0.6 because it contains
3 out of a total of 5 object usages. The probability of each
feature in the pattern is determined by the fraction of object
usages that possess this feature, e.g. 2

3 of the object usages in
this cluster were observed in context I.m. The complete vector
that describes the probabilities of all dimensions in the feature
space of pattern p1 is (0.67,0.33,0,1,1,0,0.33) .

The clustering component is exchangeable and represents
the extension point that is addressed in this work. The original
PBN publication used a variant of canopy clustering that
followed a simple algorithm:

1) Randomly select an object usage.
2) Calculate the distance to all remaining object usages.
3) Select all object usages closer than a specified threshold.
4) Merge these into a centroid that represents the cluster.
5) Remove all selected object usages.
6) Repeat steps 1-5 until no object usages are left.

While merging all object usages in step 4, all binary
information is converted to probabilities like those shown
above. The authors applied smoothing to omit extreme values

class C implements J {
  @Override
  void n(T ou3) {
    ou3.m2();
    ou3.m3();
  }
}

class A implements I {
  @Override
  void m(T ou1) {
    ou1.m1();
    ou1.m2();
  }
}

class B implements J {
  @Override
  void m(T ou2) {
    ou2.m1();
    ou2.m2();
    ou2.m4();
  }
}

class D implements K {
  @Override
  void o(T ou4) {
    ou4.m4;
  }
}

Fig. 2. Code snippet examples from code repositories
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A. Data representation

The input data for PBN is generated by statically analyzing
code repositories for example usages of object types that
belong to frameworks or libraries. Examples that are found
are represented as an object usage. An object usage is an
abstract representation of a single instance of a specific API
type and contains different features that describe it. Apart
from the invoked method calls, additional features are extracted
that describe the surrounding code in which the instance was
used. This includes the enclosing class and method context,
the definition site of an object usage, and all parameter call
sites.

In Figure 2, we show five code snippets that we will use
as a running example throughout the paper. For all examples,
we are collecting information for the object type T. The first
object usage ou1 has a method context I.m1and two receiver
call sites m1 and m2. Thus, ou1 can be described by these
three features. Similar information can be gathered for the
other snippets.

All code snippets are transformed into the processable
format shown in Table I in two steps. First, all features are
aggregated and stored in a feature set. This set spans the
available feature space of all possible feature combinations. In
our example, these are the vertical labels in the table. Second,
each object usage is transformed into a binary vector in the
feature space (as defined by the feature set). The dimension
of each feature contained in the object usage is set to 1, all
others are set to 0. Each row in the table represents a single
object usage from the examples.

Using the first declaration as the context is a generalization
that might result in duplication. For example, object usage
ou5 (not shown in Figure 2) might be observed in a different
implementation of I, say A2. If the same combination of
methods are invoked, it is considered as the same object usage
as ou1, because it is represented with the same binary vector.
Proksch et al. [6] do not merge such object usages, but keep
them as separate rows in the table. In Section ??, we discuss
how we merge such object usages.

1The method context always points to the type in the hierarchy in which
the method signature was defined first. Therefore, it is I.m and not A.m.
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Fig. 3. PBN inference engine as a result of canopy clustering of the object
usages in Figure 2 and represented by the matrix in Table I

Note that similar to Proksch et al. [6], we consider all
feature kinds (method calls, method context, class context,
definition site, receiver call site, and parameter call site) in
our work. However, all examples in this paper are reduced
to method calls and method context to make them more
comprehensible.

B. Clustering the input data

The matrix generated in the previous step is passed to
the clustering component in the PBN pipeline in order to
find similar vectors that can be grouped into patterns (see
Figure 1). A pattern has a defined probability and also contains
a probability between 0 and 1 for every feature in the feature
space. For example, consider that the object usages ou1, ou2,
and ou5 end up in the same cluster since they are similar. The
resulting pattern p1 has the probability 0.6 because it contains
3 out of a total of 5 object usages. The probability of each
feature in the pattern is determined by the fraction of object
usages that possess this feature, e.g. 2

3 of the object usages in
this cluster were observed in context I.m. The complete vector
that describes the probabilities of all dimensions in the feature
space of pattern p1 is (0.67,0.33,0,1,1,0,0.33) .

The clustering component is exchangeable and represents
the extension point that is addressed in this work. The original
PBN publication used a variant of canopy clustering that
followed a simple algorithm:

1) Randomly select an object usage.
2) Calculate the distance to all remaining object usages.
3) Select all object usages closer than a specified threshold.
4) Merge these into a centroid that represents the cluster.
5) Remove all selected object usages.
6) Repeat steps 1-5 until no object usages are left.

While merging all object usages in step 4, all binary
information is converted to probabilities like those shown
above. The authors applied smoothing to omit extreme values
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Figure 1: Pattern-based Bayesian Network Pipeline, where clustering (dashed frame) is exchanged with BMF

2. BACKGROUND & MOTIVATION
This paper focuses on method call completion. In other

words, the developer knows the object type she needs but
has to decide which method to call next. Previous work
that focused on improving code completion often used only
parts of the context information available such as the type
of the receiver object, the set of already performed calls on
the receiver, and the enclosing method definition [2, 5, 18].
In our previous work [16], we showed that using additional
context information such as definition sites, parameter call
sites, and class context does improve the prediction quality
(i.e., the F1-measure). While we introduced Pattern-based
Bayesian Networks (PBN) and used canopy clustering to al-
low us to better handle the increased amount of input data,
we found that using the additional contextual information
nearly doubled the model size forcing us to consider the
tradeoffs between adding more useful contextual informa-
tion and the increase in model size. We advocated for more
intelligent machine learning algorithms that can further re-
duce the model size to allow using more context information.

This paper proposes using Boolean Matrix Factorization
(BMF) as a means of building smaller models. We build
BMF on top of the PBN pipeline, shown in Figure 1, where
we replace the dash framed part with BMF (see Section 3).

2.1 PBN Pipeline
The Pattern-based Bayesian Network (PBN) is an exten-

sible inference engine for intelligent method call completion.
It is structured as a four step pipeline shown in Figure 1.

Step 1: Analyze code repositories. The input data for PBN
is generated by statically analyzing code repositories for ob-
ject usages. An object usage is an abstract representation of
an example usage of a specific instance of an API type. It
contains different features that describe the specific usage,
such as the method calls invoked on the given instance, the
enclosing class and method context, and the definition site.

Figure 2 shows five code snippets that we use as a run-
ning example throughout the paper. They are analyzed to
collect information for the object type T. The pipeline is ex-
ecuted separately for each object type in the API for which
a recommender is built. The first object usage ou1 has a
method context I.m and two receiver call sites m1 and m2.
Note that the method context always points to the type in
the hierarchy in which the method signature is defined first.
Therefore, it is I.m and not A.m. This is a generalization that
may lead to replications of the same object usage. For exam-
ple, ou5 of type T is observed in class A2 that implements
I. It contains the same combination of method invocations
as ou1, and will thus have the same binary vector as ou1.

Based on such analysis, code snippets are transformed into

Table 1: Object Usages represented in the feature
space
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ou1 1 0 0 1 1 0 0
ou2 0 1 0 1 1 0 1
ou3 0 1 0 0 1 1 0
ou4 0 0 1 0 0 0 1
(ou5) 1 0 0 1 1 0 0

the matrix format shown in Table 1, where columns repre-
sent the set of all features that appear in the code (the fea-
ture space). While all feature kinds (method calls, method
context, class context, definition site, and receiver call site)
are considered, the examples in this paper are reduced to
method calls and method context for easier illustration.

Step 2: Identify patterns. The matrix generated in Step 1
is passed to the clustering component that looks for similar
vectors (object usages) that can be grouped into patterns.
The clustering component is exchangeable and represents
the extension point that is addressed in this work. The out-
put of the clustering step is a list of patterns. The original
pipeline uses canopy clustering, which identifies three pat-
terns from the example in Table 1: P1 contains ou1, ou2,
and ou5; P2 contains ou3; and P3 contains ou4.

Step 3: Calculate Bayesian Network (BN). The patterns
from Step 2 are used to create the network where we as-
sign a probability of occurrence to each pattern and to each
feature-space dimension within a pattern. The probability
of a pattern P is calculated as follows:

p(P ) =
np

ntotal
(1)

where np is the number of object usages in P, and ntotal is
the total number of object usages for the given API type.

The probability of a feature f in a given pattern P, where
nf is the number of object usages in P that contain f is:

p(f |P ) =
nf

np
(2)

The root node in the Bayesian Network contains all iden-
tified patterns with corresponding probabilities. The other
nodes contain the different features with the corresponding
probabilities within each pattern.

Step 4: Query the BN. When a query is provided to the
recommender (top right of Figure 1), the constructed BN
is used to infer method proposals. A query is an object
usage extracted from the source code under edit. All ob-
served information is set as evidence in the network and the
probability for all remaining methods (unobserved features
shown as question marks) is calculated. The output is a list

2



Figure 2: Code snippet examples from code repositories

of method calls with an assigned probability. Only methods
with a probability higher than 30% are proposed to the user.
While this threshold is configurable, we follow previous work
and select the same threshold for comparability.

2.2 Motivation and Problem Statement
We selected the top five frameworks (according to the

number of object usages) in the Eclipse plug-in dataset.
Figure 3 shows the model sizes obtained by PBN for
all API types in the selected frameworks. As the num-
ber of object usages available for a type increases, the
model size linearly increases. With the increasing num-
ber of available code repositories that can be mined, a
single API type can have more than 100,000 usages. A
quick search for org.eclipse.swt.widgets.Composite (a
framework-specific type) and java.util.ArrayList (a core
Java library type) on Github returns over 220,000 and
750,000 files, respectively. If we assume each of these files
contains only one object usage of the respective types and
extrapolate on the shown graph, the model size for a single
type would reach 75MB. A recommender system should be
able to support hundreds of types. If only 100 API types
would be loaded simultaneously, the model sizes could sum
up to 7.5 GB.

One problem with such large model sizes is that bloated
models can greatly slow down the querying time. Addition-
ally, models need to be loaded from the hard drive and de-
serialized, before they can be used in the IDE. This startup
delay can be avoided by caching loaded models. Note that a
recommender may need to load multiple models in-memory
to instantly support different API types that developers may
use in an IDE. Smaller models consume less main memory
such that it is possible to load more models at the same
time, preventing unnecessary delays.
Problem 1: As more contextual information is used to
describe the code in the models and as the number of input
object usages increases, model sizes become increasingly big.

As more code repositories are being mined and additional
context information is being used, more noise (erroneous
data) is likely to appear in the models. If the clustering
technique being used does not effectively filter out noise,
then accurate models cannot be produced.
Problem 2: More input data may result in more noise that
should be filtered to provide accurate recommendations.

2.3 Intuition Behind Using BMF
Given the above two problems, we need to find a way

to reduce the size of the model without loosing important
information. The pipeline in Figure 1 shows that the clus-
tering technique used in Step 2 (dashed frame) affects the
number of patterns detected, which in turn affects the size
of the calculated Bayesian Network. Therefore, by using
advanced clustering techniques, we can reduce the resulting
model size. Matrix factorization techniques provide an al-
ternative clustering technique [3]. Previous work shows that
BMF performs better with binary data compared to other
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Figure 3: Scalability of model size in existing PBN

MF methods [19]. Since the matrix used to represent object
usages is already Boolean, BMF is well-suited in this con-
text. We expect BMF to produce smaller model sizes with
accurate recommendations than the currently used canopy
clustering because of its following characteristics:

(1) Identifies outliers and removes them from the data set.
Canopy clustering assigns all the data points to patterns.
This means that canopy clustering cannot handle erroneous
data points (outliers). BMF automatically removes noisy
data during the factorization process.

(2) Avoids user-defined parameters to cluster the data. In
the background, canopy clustering uses two user-specified
parameters t1 and t2 in order to determine the distance
between the data points that will be clustered. In prac-
tice, the user has two choices. The first is to specify global
values for t1 and t2 without taking into consideration that
different API types would require different values (as cur-
rently implemented in PBN [16]). The second is to per-
form extensive analysis for each API type individually in
order to achieve better results. This of course introduces
a human-involvement bottleneck and scalability issues. By
using MDL4BMF [12], we can automatically calculate the
optimal number of patterns needed to represent every API
type in the code repositories specific to the given data set.

3. INTEGRATING BMF INTO PBN
In this section, we first give a brief description of BMF

and then describe how we integrate it into PBN.

BMF Problem Definition: Given a Boolean matrix A of
size m×n and an integer k representing the expected factor-
ization rank, find a factorization of A into a Boolean matrix
B of size m× k and a Boolean matrix C of size k × n such
that the error introduced by the factorization is minimized:

min(|A⊕ (B ◦ C)|) (3)

where matrices B and C are factor matrices of A. The fac-
torization rank k represents the number of clusters in clus-
tering terminology. The xor operation (⊕) is used to calcu-
late the factorization error between the data matrix A and
the Boolean product of the two factor matrices B and C.

To provide the data matrix A for BMF, we use the same
object usage representation shown in Table 1, which is shown
again in Figure 4 (differences to Table 1 are explained in
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Figure 4: An approximation of the Boolean matrix A by the Boolean product of the two factor matrices B
and C. The frequency vector shows the number of occurrence for the object usages.

Section 3.1). The object usages within a cluster are defined
by the factor matrix B, where B(i, j) = 1 means that object
usage i is in pattern j. For example, matrix B in Figure 4
indicates that ou2 and ou3 belong to pattern P1.

As in clustering approaches, similar (different) data points
need to be assigned to the same (different) rank. This is
ensured through matrix product algebra. Every element in
row r of matrix A is equal to the sum of the products of row
r in matrix B and its corresponding column in matrix C.

A(r, 1) =
∑

B(r, :) ◦ C(:, 1)
A(r, 2) =

∑
B(r, :) ◦ C(:, 2)

..
A(r,m) =

∑
B(r, :) ◦ C(:,m)

In this way, if there are two (or more) similar object usages
in the data set, they will have similar rows in matrix A.
Following the above explanation, they will also have similar
rows in factor matrix B. Consequently, they will be assigned
to the same rank in factor matrix B.

3.1 Using BMF to Generate Patterns
To apply BMF on our input data, we introduce some mod-

ifications to the data representation. The left side of Figure 4
shows the same matrix as in Table 1. However, instead of
repeating duplicate rows (i.e., ou1 and ou5 ), we introduce
a frequency vector that stores the number of times a specific
object usage is observed in the code repository. Thus, the
input data matrix A is reduced to four rows, but a frequency
vector is introduced that preserves count information.

Given the data matrix A, BMF produces the factor ma-
trices B and C shown on the right of Figure 4. Note that
for BMF, a given object usage may be assigned to one or
more patterns or to none of them (outliers). Even though
canopy clustering is considered a soft clustering algorithm,
the current variant used in the PBN pipeline configures the
distance threshold in a way that reduces it to hard clustering
(each data point is assigned to exactly one cluster).

To ensure that patterns closely represent their contained
object usages and to be comparable with the canopy cluster-
ing configuration, we introduce a heuristic to handle corner
cases where the same usage is assigned to multiple patterns.
The heuristic assigns each object usage to one pattern that
it is most similar to based on the Hamming distance be-
tween the feature vector of the object usage in question
and the patterns it belongs to. The object usage is then
removed from the other pattern(s) by changing its corre-
sponding value to 0 in factor matrix B. The object usage
will only be assigned to multiple patterns if they share the
smallest Hamming distance. For example, in Figure 4, ou2
has been assigned to both patterns P1 and P2. Since the
Hamming distance to pattern P1 is 2 and to P2 is 3, we
would remove it from P2 and assign it only to P1.
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Figure 5: Patterns generated from BMF

3.2 Calculating PBN
After the patterns are detected, we need to calculate the

probabilities of the patterns and of the features within a
pattern. Such probabilities are calculated using Equation 1
and Equation 2, respectively. Note that the counts are taken
from the introduced frequency vector.

In canopy clustering, the probabilities of all the patterns
sum up to 1, but this is not the case for BMF since there
are object usages assigned to multiple patterns or to none
of them (outlier). This is internally handled by the BN
implementation, which does a normalization of the pattern
probabilities to sum up to 1.

BMF can be used in Step 2 of Figure 1. Its generated pat-
terns from our example (Figure 5) have the same format as
those generated using canopy clustering and can directly be
used to calculate the BN in Step 3. After that, the inference
engine can be used to infer method proposals (Step 4).

4. EVALUATION
We use the PBN pipeline from Figure 1 to compare the

performance of the two clustering approaches that have been
discussed in this work: canopy clustering and BMF. For
comparability, we reuse the publicly available dataset that
was previously used to evaluate PBN [16]. The dataset was
obtained from the Eclipse Kepler update site, which is the
main source of plug-ins for all Eclipse developers. We focus
our evaluation on the SWT framework1, the open source UI
toolkit used in the Eclipse development environment. The
static analysis identified 44 different API types used in our
evaluation, with a total of 190, 000 object usages. We use
10-fold cross-validation to evaluate each extracted API type.
The object usages are disjointly assigned to 10 folds where
the union of 9 folds (training set) is used to learn the models,
and the remaining one (validation set) is used for querying
the learned models. To avoid intra-project comparisons that
may introduce a positive bias to prediction quality, we en-
sure that object usages generated from the same project are
assigned to the same fold.

4.1 Recommender Evaluation
We focus our evaluation on three properties: prediction

quality, model size, and inference speed.
Prediction quality. Any new clustering approach should

not have a big negative effect on the prediction quality. A

1http://www.eclipse.org/swt/
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Table 2: F1-measure of different recommenders
App. PBNBMF PBNBMF+ PBN15 PBN40 PBN60

F1 0.455 0.470 0.517 0.488 0.367

big negative effect might outweigh any reduction in model
size or gain in inference speed. We therefore analyze the pre-
diction quality first. For each API type, the object usages
in the validation set are used to query the model (learned
from the training set). Multiple queries are constructed by
randomly removing about half of the call sites from the orig-
inal object usage (e.g., given an object usage with 3 calls, it
is possible to create 3 queries with 1 call). We build queries
that mimic both sequential (coding from up to bottom, or
from bottom to up) and random (randomly adding snippets
of code in the program) coding styles. The code comple-
tion engine is called on these incomplete object usages and
the prediction quality is measured by calculating the F1-
measure between the ranked (list of) proposals and the re-
moved method calls. Proposal ranking is used to filter out
proposals with a probability lower than 30%. In a last step,
the different results of all queries generated from a single
object usage are averaged.

Model size. We report the total model size for both ap-
proaches (canopy clustering and BMF) in Bytes. This is
calculated by multiplying the number of stored float val-
ues in the Bayesian Network, representing confidence levels,
by the number of Bytes needed to store float values on disk.
Since each approach produces a different number of patterns,
the resulting model sizes differ. Specifically, more patterns
result in more values to be stored in the network.

Inference speed. The inference speed measures the time
needed for the code completion engine to predict the rel-
evant method calls for a given query. Inference speed is
directly related to model size. A smaller model size means
that less time is needed to read the models and calculate
the proposals, and vice versa. We measure this time in mil-
liseconds and report an average inference speed for each API
type (total computation time divided by the total number
of queries). For each type are selected at most 3.000 queries.

4.2 Results
Prediction quality. We compare PBNBMF with and with-

out the heuristic mentioned in Section 3.1, to the three clus-
tered configurations of canopy clustering originally used in
PBN [16]: PBN15, PBN40, and PBN60. The indices rep-
resent different distance threshold values used for canopy
clustering, where smaller indices mean ”stricter” clustering
(more patterns).

Table 2 shows the F1-measure averaged over all the an-
alyzed API types. The table shows that our heuristic
(PBNBMF+) does have a positive impact on prediction qual-
ity compared to PBNBMF. This impact is more noticeable
for specific API types.

When compared to PBN15, PBNBMF+ compromises the
prediction quality (−0.047). This is expected since PBN15

is an almost unclustered model. PBNBMF+ is, however,
comparable to PBN40. The difference (−0.018) in predic-
tion quality is not statistically significant (p-value = 0.1257)
according to the Mann Whitney U-Test [14]. Note that
PBNBMF+ reaches a higher prediction quality than PBN60

(+0.103). Thus, to have a fair comparison, we only compare
PBNBMF+ and PBN40 in the remaining experiments.

Model size. After verifying that prediction quality is not

compromised, we analyze the effect of BMF on the model
size. To do so, we compare the model sizes of PBNBMF+ ver-
sus those of PBN40. The model size depends on the number
of available object usages for a type since more object usages
might result in more patterns and vice versa. Therefore, we
show the reduction of model size separately for each API
type that has more than 2,000 object usages. We skip API
types with less than 2,000 object usages since their model
sizes are already small.

In addition to model size, we also show the difference in
prediction quality for each of the analyzed types in order to
have a fair comparison between the difference in model size
and the corresponding impact on prediction quality. Fig-
ure 6 shows this comparison for each analyzed type, where
model size is shown on the left-lower part of the y-axis and
prediction quality is shown on the right-upper part of the y-
axis. The plot shows that for almost all the analyzed types,
PBNBMF+’s prediction quality is comparable to PBN40, but
the model sizes obtained by BMF are much smaller. This is
especially obvious for types with a bigger number of object
usages (more to the left), showing that PBNBMF+ performs
better for a larger number of object usages.

The reduction in model size ranges from 30% (Button)
up to 80% (Table). The model size is proportional to the
number of patterns created by each of the approaches. For
Table, the model of PBN40 contains 176 patterns on average
over all folds, while the model of PBNBMF+ contains only
36 patterns after an average of 270 outliers over all folds has
been detected during factorization. In our dataset, Table is
the type for which BMF detects the highest number of out-
liers. This suggests that the object usages in Table differ
a lot. While canopy clustering creates separate patterns for
these varying object usages, BMF is able to detect the ones
that differ significantly from the other object usages and
treat them as outliers. A closer inspection of the data shows
that the object usages of Table are declared in very different
contexts, with a rough estimation 75% of all the extracted
features are related to context information. Thus, the dif-
ference between the object usages of type Table is related
to the fact that they are declared in very different method
contexts. Additionally, we see that the difference between
the F1-measure of PBNBMF+ and PBN40 for type Table is
only 0.03. This shows that BMF is not removing important
object usages that greatly influence prediction quality.

On the other hand for Button, BMF only detects 80 out-
liers averaged over all folds, even though it has almost five
times more object usages compared to Table. However, the
context information roughly accounts for only 40% of the
extracted features while almost all the remaining features
are definition sites. Definition sites indicate how an object
becomes available in the source code but not how it is used.

For the call site features, on average, two method calls
are invoked on object usages of Button and Table. While
method calls in Button account for only 0.7% of the total
number of features, they account for 6% in Table. This sug-
gests that even though the object usages from both types
call on average the same number of methods, the total num-
ber of methods available in Table is almost ten times higher
compared to Button. This means that more object usages
from Button will be similar (have a lot of common context
information and call almost the same methods), which is
why fewer patterns are identified. This is true for both BMF
and canopy clustering and explains why BMF results in a
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Figure 6: F1-measure and model size for API types with more than 2,000 object usages. Number of object
usages used for each type shown in parenthesis.

smaller reduction in model size here.
Inference speed. After showing that BMF reduces the

model size with no significant loss in prediction quality, we
expect a speedup in inference speed since a smaller Bayesian
network should be faster to query. When compared to
PBN40, PBNBMF+ does indeed result up to 78% faster in
inference speed (from 3 ms to 0.6 ms), and 46% faster (from
3.2 ms to 1.7 ms) when averaged across all API types.

Limitations. Even though the reported numbers in terms
of model size (6 MB) and inference speed (3.2 ms) are not
a scalability issue for current recommender systems, we use
the same dataset as in our previous work [16] for compara-
bility. Note that this work is the first step in using BMF as
a means to create smaller models within the context of in-
telligent method call completion, and our results show that
BMF is a promising approach in this direction.

5. THREATS TO VALIDITY
Internal Validity. MDL4BMF is a general machine learn-

ing algorithm, not bound to a specific application domain.
We experimented with different values of the factorization
rank for various API types to ensure that the factorization
rank calculated by the algorithm is indeed optimal in our
intelligent method call completion context. Our results (not
shown due to space restrictions) showed that the factoriza-
tion rank automatically calculated by MDL4BMF does in-
deed provide the best tradeoff between model size and pre-
diction quality. This gives us confidence that the algorithm
correctly calculates the optimal factorization rank and sug-
gests that it is independent from the nature of input data.

External Validity. We test the use of BMF for one dataset
within the context of one method call recommender. Dif-
ferent datasets and recommenders might exhibit different
behaviors in terms of model size and prediction quality. Ad-
ditionally, different heuristics might be required for different
datasets or recommenders. For example, we analyzed the ef-
fects of the following heuristic to ensure that the detected
outliers by MDL4BMF are indeed valid outliers: If the fre-
quency ratio of a noisy object usage is lower (higher) than
a specific threshold t, we (don’t) consider it to be a valid
outlier. Our empirical analyses showed that BMF does in-
deed filter out valid outliers that have a low frequency ratio
without a significant impact in prediction quality. In other
datasets, the effect of this heuristic might be different. We
do not generalize our results to other datasets but only point

out potential applications in the related work. Our work
here is a first step to illustrate the use of BMF, and the
PBN pipeline allowed us a fair comparison since we have all
implementation details.

6. RELATED WORK
Since our main goal is to address scalability and not to

propose a new recommender, we do not focus on other intel-
ligent method call completion techniques. We discuss four
categories of related work:

Matrix Factorization. Non-Negative Matrix Factorization
(NMF) [1] represents a non-negative data matrix using two
factor matrices, given a pre-defined factorization rank. In
comparison to BMF, NMF requires that the input data ma-
trix and the factor matrices have non-negative values. The
algorithm is shown to scale well for large data ranges [8]
and is widely used in text mining and data-clustering [21].
One drawback is that we cannot use the MDL principle with
NMF to calculate the optimal factorization rank for a given
data set. Instead, we need to input the factorization rank
as a parameter. We tried NMF with our data by using the
same factorization rank calculated by the BMF approach
and the results (not shown) were not significantly better
than BMF. For a broader overview on different Matrix Fac-
torization methods and their computational complexity, we
refer the reader to Miettinen’s work [11].

Potential Applications in Code Recommenders. Precise
[22] is an approach to recommend parameters for method
calls, and the work by Zhang et al. [23] recommends combi-
nation of method calls. They both use binary representation
of the data and clustering algorithms respectively for param-
eter and method recommendation. Since the data is already
represented in Boolean format, their work might potentially
benefit from BMF to construct clusters without requiring
the user-specified threshold needed by their approaches.

Potential Applications in Pattern Mining. Frequent item-
set mining is a common technique for detecting patterns
in datasets. DynaMine [9], PR-Miner [7] and the work by
Michail et al. [10] are few examples in this direction. Some
of these approaches [9, 10] make use of the Apriori algorithm
to detect frequent item sets in the data, whose runtime is
exponential with respect to the number of items. It is worth
investigating whether it is possible to mine patterns using
BMF instead. This requires the data to be represented as
Boolean matrices in the form methods (or other program-
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ming elements) by items (object, class etc.).
Scalability in Code Recommenders. Weimer et al. [20]

applied a different matrix factorization algorithm, Maximum
Margin Matrix Factorization to code recommenders. Their
technique builds a single model for a complete framework,
rather than a model for each API type. The authors point
out the scalability issues they face due to the complexity
of the optimization problem of the underlying factorization
algorithm. This forced them to limit the size of the input
data they provide to the algorithm.

Recommender techniques that treat code as plain text
[4] or as some form of structured sentences with underly-
ing statistical language models [17], naturally scale to large
repositories. On the other hand, GraLan [15] needs a large
number of trees/graphs to capture the context information
of the code under editing. Therefore, it uses two thresholds
to limit the number and size of the generated trees/graphs.
However, such techniques don’t consider some of the struc-
tural information of the code, which is important to make
more useful code predictions.

7. CONCLUSIONS
Intelligent code completion systems learn models by ana-

lyzing a large number of code repositories to increase the
probability of detecting relevant patterns for developers.
With the vast increase of available data in such reposito-
ries, scalability becomes an issue, especially with respect
to the learned model sizes. Another factor that influences
model sizes is the use of additional contextual information
to improve prediction quality. In this paper, we investi-
gate Boolean Matrix Factorization (BMF) as a means to
create smaller models by adapting our previously developed
Pattern-based Bayesian Network (PBN) framework [16] and
replacing the originally used canopy clustering with BMF.
We compare both approaches on the SWT framework and
show that we obtain model sizes that are up to 80% smaller,
which in return reduces inference speed by up to 78%, all
while not compromising prediction quality (F1-measure).
Our results suggest that BMF is promising in the context of
intelligent method call completion and speculate that other
software analytics applications may also benefit from it.
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