
LibComp: An IntelliJ Plugin for Comparing Java Libraries
Rehab El-Hajj

relhajj@ualberta.ca
University of Alberta

Edmonton, Alberta, Canada

Sarah Nadi
nadi@ualberta.ca

University of Alberta
Edmonton, Alberta, Canada

ABSTRACT

Software developers heavily rely on third-party libraries to accom-
plish their programming tasks. Since many libraries offer similar
functionality, it can be difficult and tedious for developers differ-
entiate similar libraries in order to select the most suitable one. In
our previous work, we proposed the idea of metric-based library
comparisons that allow developers to compare various aspects
of libraries within the same domain, empowering them with in-
formation to aid with their decision. In this paper we present an
IntelliJ plugin, LibComp, that provides this library metric-based
comparison technique right within the developer’s IDE. As soon
as a developer adds a library dependency that LibComp has in-
formation about, LibComp will highlight this dependency to let
the developer know that there are alternatives available. Once the
user triggers the comparison for that library, they can view various
metrics about the library and its alternatives and decide if they
want to use one of the alternatives. In the process, LibComp also
records the number of times the developer invokes the tool and
any completed replacements. Such feedback, if optionally sent to
us by the developer, provides us valuable insights into developers’
replacement decisions as well as information on how we can im-
prove the tool. A video demonstrating the usage of LibComp can
be found at https://youtu.be/YtEEdJan77A

CCS CONCEPTS

• Software and its engineering→ Software libraries and repos-

itories; Software maintenance tools.

KEYWORDS

IntelliJ plugin, software library comparisons, software aspects
ACM Reference Format:

Rehab El-Hajj and Sarah Nadi. 2020. LibComp: An IntelliJ Plugin for Com-
paring Java Libraries. In Proceedings of the 28th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE ’20), November 8–13, 2020, Virtual Event, USA. ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/3368089.3417922

1 INTRODUCTION

Most software applications rely on third-party components, such as
software libraries, to implement various functionality. Choosing the
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7043-1/20/11. . . $15.00
https://doi.org/10.1145/3368089.3417922

Figure 1: LibComp’s main metric-based library comparison

dialog. It displays data on various metrics for the selected

library and all alternative libraries within the same domain.

right library is an important decision; relying on a library that is, for
example, not maintained or that has known problems can lead to
high maintenance costs down the line when developers are forced
to replace this library or deal with rippling effects of the problems.
However, it is not always clear how to compare and select the best
library from a seemingly similar set of available libraries. Thus,
developers often spend time to understand differences between
available libraries by, for example, reading the libraries’ documen-
tation or searching for blogs or posts on Stack Overflow [17, 22]. To
save developers’ time and address their need to compare libraries,
we previously proposed the idea of metric-based library compar-
isons [7, 8] where we compiled a set of metrics that can be used
to compare libraries. After surveying 61 developers and gathering
feedback about the metrics and comparison [8], we built a website
that developers can use to compare libraries in the same domain [6].

While such a website is useful, it also means that every time
a developer wants to compare libraries, they are forced to leave
their Integrated Development Environment (IDE) to a completely
separate environment. Thus, to make our library comparisons more
accessible to developers, this tool paper contributes our metric-
based Java library comparisons as an IntelliJ plugin, LibComp.

To help developers compare similar libraries, LibComp displays
several libraries from the same domain (such as testing, databases,
logging etc.) via a visual and interactive dialog shown in Figure 1.
This dialog compares libraries across various metrics such as popu-
larity, release frequency, as well as issue response and closing rates.
LibComp empowers developers with information that allows them
to make informative decisions about the libraries they use.

While our existing website allows users to upvote/downvote met-
rics, it does not capture the developer’s final decision or if they were
trying to replace an existing library. To overcome this, LibComp
also gathers feedback about how the metric-based comparison is
being used by developers. Whenever the user triggers LibComp,
we record the domain being compared, the libraries being com-
pared, and if any library replacement took place. If the developer

https://youtu.be/YtEEdJan77A
https://doi.org/10.1145/3368089.3417922
https://doi.org/10.1145/3368089.3417922

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Rehab El-Hajj and Sarah Nadi

authorizes sharing this data, they can send the collected feedback
to our server1. The collected feedback can help us understand how
developers compare libraries and what common replacements are,
and also help us improve LibComp in the future.

LibComp is open-source on GitHub under an MIT license [12],
with instructions on how to install and use the plugin. It currently
supports 50 Java libraries from 10 domains, but can be easily ex-
tended to other languages in the future. LibComp currently detects
usages of these supported libraries through import statements as
well as dependencies in gradle or maven build files.

2 RELATEDWORK

There is a lot of existing work that investigates the aspects develop-
ers take into account while selecting a library [17, 21, 23]; however,
most of that work does not present any tool for end users. Many of
our metrics are inspired by these discovered aspects; our previous
work detailed these relationships and differences [7, 8]. In this sec-
tion, we focus on the tooling perspective of existing information
related to library comparison. Many comparisons, similar to how
we started, are presented in a website form. For example, Hora
and Valente [16] show Application Programming Interface (API)
popularity and API migration information on a website. Similarly,
Uddin and Komh present their Opiner tool [24], which mines de-
velopers’ opinions on libraries from Stack Overflow, as a website.
Lin et al. [18] also develop an Stack Overflow opinion mining ap-
proach, but do not build an actual tool/website for end users to
use. In contrast to the above work and other existing work, our
current metric-based comparison technique provides developers
with factual information on various library aspects, and is based on
multiple information sources. More importantly, to the best of our
knowledge, none of the existing comparisons provide integrated
support tools. To make research techniques more accessible to de-
velopers, various kinds of software development support tools have
been integrated as IDE plugins (e.g., [3, 15, 20]). Motivated by mak-
ing our metric-based comparisons more accessible, we also design
LibComp as a plugin for the popular Java IDE, IntelliJ.

3 METRIC-BASED LIBRARY COMPARISON

LibComp delivers the metrics we developed in our previous work [7,
8]. Note that all these metrics rely on mining information from the
library’s version-control system, issue-tracking system, or Stack
Overflow questions. Thus, we can collect information only about
open-source libraries with these repositories available. The details
of how each metric is calculated is explained in our previous work
and all the scripts are open source [5]. In this section, we provide a
brief summary of these metrics. We also clarify if any metrics or
information has changed since our original publications.
• Popularity is the number of projects using a library. In our pre-
vious implementation [8], we used BOA [11] to mine such usage
based on import statements. However, since the BOA data set is
not frequently updated, we changed the calculation to search for
import usage in the top 1000 starred GitHub repositories.

• Release Frequency is the average time in days between two
consecutive releases of a library.

1Note that we received ethics clearance for this tool from our university

• Last Modification Date is the date of the last commit in a li-
brary’s repository.

• Performance is measured with a heuristic calculating the per-
centage of performance-related issues of a library (as determined
by a machine-learning classifier).

• Security is measured with a heuristic calculating the percentage
of security related issues of a library (as determined by a machine-
learning classifier).

• Issue Response Time is the average time, in days, to get the first
response to a reported issue.

• Issue Closing Time is the average time, in days, to close issues.
• Backwards Compatibility is the average number of breaking
API changes between two consecutive releases, calculated using
Xavier et. al’s work [25].

• Last Discussed on Stack Overflow is the time since a question
tagged with this library has been asked on Stack Overflow.

• License is the library’s license on GitHub. This is new informa-
tion we include based on feedback from our previous survey [8].

• Overall Score is a also a new metric, which provides an overall
rating out of 5 stars for each library [19]. Briefly, each of the above
metrics gets a normalized weight between 0 and 1 depending
on its semantics, where 1 is the maximum best value. We then
calculate the overall library score as the sum of each metric score
divided by the number of metrics and scaled to 5.
A scheduled cron job that automatically calculates the above

metrics runs on a monthly basis and updates the data displayed on
our website [6]. We also provide charts to compare the libraries and
show evolution trends. For example, the popularity chart shows
the evolution of a library’s popularity, based on our monthly re-
calculation of the metrics. On the other hand, the release frequency
chart shows the dates of the previous releases. Such charts were
requested by our previous survey participants [8] as a way to help
them better interpret the metrics.

4 LIBCOMP OVERVIEW

In this section, we present LibComp from the end-user’s perspective,
that is the developer who is developing some application in IntelliJ.

4.1 Usage Overview

LibComp can be installed as an IntelliJ plugin using the package we
provide on our GitHub repository [12]. After installation, when a
user opens an IntelliJ project, LibComp automatically starts analyz-
ing all open Java files and, if available, the build.gradle or pom.xml
file in the project. Any import statements or gradle/maven library
dependencies we have information about in our database get high-
lighted in pink, as shown in Figure 2. The developer can right click
on any of these highlighted statements and select “Library Com-
parison” from the menu. A dialog that displays the metric-based
comparison for all the libraries in the domain corresponding to the
highlighted library pops up in the centre of the editor.

Figure 1 shows the dialog that will appear when the developer
clicks on the highlighted import org.mockito.* statement. The
comparison in the dialog displays all the libraries we have informa-
tion on in the Mocking domain, which is the domain the clicked
import org.mockito.* statement (seen in the bottom of Figure
2a) belongs to. The already imported library is specified as the

LibComp: An IntelliJ Plugin for Comparing Java Libraries ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

(a) Highlighting of import statements.

(b) Dependency highlighting in build.gradle (similarly for pom.xml).

Figure 2: LibComp’s dependency highlighting. User right

clicks on highlighted lines and clicks “Library Comparison”

to open the comparison dialog shown in Figure 1.

“Current Library” as seen in the first column in Figure 1. While this
dialog is open, the user has the ability to compare the metric data
for the alternative libraries with the selected library, open a chart
to see a visualization of the data by clicking the chart icon on the
far left of the dialog, or sort the libraries by a specific metric by
clicking either the red or green downward/upward arrows for the
metric of their choice. Based on the provided information, the de-
veloper is able to compare the metric data and come to an informed
decision on whether or not they would like to change the current
library. The user can hover over any of the metric columns to get a
short description about them. If the developer chooses to replace
the current library, she can choose one of the alternative libraries
and click on the “Replace” button. In our example in Figure 1, the
developer chose the jmock-library library (as indicated with the
blue highlighting) as a replacement.

Once the replace button is clicked, the comparison dialog will
close and the originally selected import statement is replaced with
an import statement corresponding to the newly chosen library. If
the developer instead decides against replacing the selected library,
they can click cancel, which will close the dialog and nothing in the
editor will change. LibComp is always analyzing the Java files in
the background. If any new import statements are added which we
have information on, they will also be highlighted. The same flow
applies for build.gradle/pom.xml files, but instead of highlighting
import statements, LibComp highlights added dependencies, as
shown in Figure 2b. The user can open the same dialog and replace
the library if they choose to do so.

4.2 LibComp Interaction Data at a Glance

LibComp tracks how the user interacts with the plugin. This allows
us to collect feedback data in order to learn what types of library
replacements occur and how our comparisons affect this. Each de-
veloper who uses LibComp can fill out a user profile (inspired by
previous work [2]) in the form shown in Figure 3a, which can be
accessed from the main LibComp menu. To then send us their col-
lected feedback data, the developer must give us explicit permission
by going to the “Send Feedback” dialog shown in Figure 3b. Using
this dialog, the developer can read the terms and conditions of the

collected data. The developer needs to explicitly acknowledge these
terms before being allowed to send us the data. Section 5 provides
more details on the exact feedback we collect.

5 IMPLEMENTATION DETAILS

To obtain the data we display in LibComp, we built a REST API that
communicates with our server, which also hosts our comparison
website. However, to avoid always relying on internet connectivity,
LibComp saves the latest data it retrieves in a local JSON file. When-
ever a project is opened, LibComp sends a request to check whether
the data on our server has been updated; if it has, LibComp requests
the new library metric data and stores it locally. Otherwise, it uses
the local version of the data it already has. Currently, LibComp
presents data for 50 Java libraries from 10 domains [8]. Each of these
libraries already has a package name associated with it. For example,
the package name associated with the Google Guava library from
the Utilities domain is com.google.common while that associated
with the Deeplearning4J library from the machine learning domain
is org.deeplearning4j. This package name helps LibComp iden-
tify matching libraries. To extend LibCompwith additional libraries
in the future, a contributor only needs to add a new library entry to
the LibraryData.json file in our scripts repository [13] with all the
above relevant information such as the library package, domain,
and GitHub URL. The new entry will then be included in the next
monthly update of the data.

To support library comparisons in Java files, LibComp uses Intel-
liJ’s Project Structure Interface (PSI) to obtain imported packages.
PSI provides us an abstract syntax tree representation of a source
code file [10], which allows us to collect the set of import statements.
For each detected import in a Java file, LibComp identifies the base
package of that import statement (e.g., base package for import
org.junit.Test is org.junit) and checks its local library data to
identify if there are any libraries corresponding to this package.
Such libraries will be highlighted as shown in Figure 2a.

To support library comparisons in gradle build files, LibComp
parses the build.gradle file (or pom.xml file in maven projects) to
obtain all dependencies. For each listed dependency, LibComp com-
pares the package specified in the group attribute to its local library
data. Any dependencies with matched libraries will be highlighted.
If the developer triggers LibComp from within the build file and
decides to replace the current library, LibComp will replace the
group and name of the dependency with those for the alternate li-
brary. For the dependency version number, LibComp queries Maven
Repository [1] to obtain the latest version for the given library. Lib-
Comp will also leave a commented link to the maven repository
page which was queried for the user to be able to refer to.

Finally, LibComp again uses our server’s REST API to commu-
nicate the user’s interaction with the plugin, if the user provides
the necessary permissions shown in Figure 3b. If such permission
is granted, then whenever LibComp is triggered, a feedback record
containing the following information will be sent to our server:

• Time of Comparison: current date and time at which the com-
parison was made.

• Project ID: the name of the current project. By keeping track
of the project ID, we are then able to track how many times the
developer used LibComp within a single project.

ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA Rehab El-Hajj and Sarah Nadi

(a) LibComp’s user profile dialog allows users to create a profile that

will be associated with their feedback entries.

(b) LibComp’s send feedback dialog explains the collected feed-

back/data. Checking these boxes means that the user has granted Lib-

Comp permission to send the plugin interaction data to our server.

Figure 3: LibComp’s feedback system dialogs.

• Previous Import List: other import statements in the class in
which the selected import statement was clicked. By keeping
track of the previous import list, we can identify relationships
between groups of libraries with common replacements.

• Location of Replacement: the line number where the replace-
ment occurred.

• Class Name: the name of the class which the replace happened
in. By keeping track of the class name, we can track how many
comparisons the developer completes within a single class.

• Selected Library: the initial library which was selected for com-
parison. By keeping track of the selected library, we are then able
to track what libraries developers are exploring most often.

• Alternative Libraries: the possible alternative libraries which
belong to the same domain as the selected library. This is recorded
in case future libraries are added to a domain.

• Selected Alternative: the library which the user chose to re-
place the selected library with. This value is null if the user
decides against replacing their initial selected library and clicks
cancel. By keeping track of the selected alternative, we are then
able to track what library replacements are common.
Tracking how developers interact with LibComp allows us to

find patterns of behaviour on frequent replacements. All feedback
entries are associated with a user profile that each user creates, dis-
played in Figure 3a. For each user, we collect information such as
their occupation, team and project sizes and level of programming
experience. We do not collect any identifying information such as
name or email, but instead generate a random user ID which asso-
ciates any collected feedback with the profile information. We also
allow the user to optionally rate LibComp and send any comments
they may have regarding LibComp. This feedback can help us make
improvements to the plugin in the future.

6 FUTUREWORK

This paper described LibComp’s first release. We encourage users
to report any bugs or desired feature requests on our GitHub repos-
itory. We also plan for the following future enhancements.

Functionality. When working at the dependency level in gra-
dle/maven files, LibComp can precisely replace a library depen-
dency with its alternative. However, when working at the import
level, LibComp can recognize only the base package of a library.
Thus, from LibComp’s perspective, importing org.junit.X is no
different than importing org.junit.Y and both these import state-
ments would be replaced by org.testng.*, if the user chooses to
do so. From a tooling perspective, we plan to explore better granu-
larity levels for detecting and replacing import statements. From a
research perspective, we will investigate code migration techniques
to not only replace the import for the developer but also update
any existing code snippets that use the old library.

Usability evaluation. We originally planned an evaluation of
LibComp as follows: (1) use before/after perceived competence
scales [9] to understand user’s perceived competence to compare
libraries, (2) use co-discovery learning [14] during the actual tasks
participants need to perform to gather more information about their
thought process, and (3) finally use the Quantitative evaluation of
satisfaction w/ UI (QUIS) scale [4] to evaluate UI usability. Due
to COVID-19 in-person meeting restrictions, we had to put this
evaluation on hold, but we plan to investigate online alternatives.

CONCLUSION

This paper presented LibComp, an open-source IntelliJ plugin [12]
for comparing Java libraries. LibComp provides a metric-based
comparison of libraries in the same domain to help developers
decide about the best library to use. LibComp currently supports
library comparisons within gradle and maven build files by ana-
lyzing declared dependencies and within Java files by analyzing
import statements. If authorized by users, it also collects data about
how developers interacted with the comparisons and sends us this
data for later analysis. Using LibComp, developers are not only able
to compare and switch between libraries within the same domain,
they can do so without having to leave the comfort of their IDE.

LibComp: An IntelliJ Plugin for Comparing Java Libraries ESEC/FSE ’20, November 8–13, 2020, Virtual Event, USA

REFERENCES

[1] [n. d.]. Maven Repository. https://mvnrepository.com/
[2] Sven Amann, Sebastian Proksch, and Sarah Nadi. 2016. FeedBaG: an interac-

tion tracker for visual studio. In 24th IEEE International Conference on Program
Comprehension (ICPC). IEEE, 1–3.

[3] Brock Angus Campbell and Christoph Treude. 2017. NLP2Code: Code snippet
content assist via natural language tasks. In IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 628–632.

[4] John P. Chin, Virginia A. Diehl, and Kent L. Norman. 1988. Development of an
Instrument Measuring User Satisfaction of the Human-Computer Interface. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
(CHI ’88). Association for Computing Machinery, New York, NY, USA, 213–218.
https://doi.org/10.1145/57167.57203

[5] Fernando López de la Mora, Rehab El-Hajj, and Sarah Nadi. [n. d.]. Metric-
based Library Comparison Scripts. https://github.com/ualberta-smr/
LibraryMetricScripts

[6] Fernando López de la Mora, Rehab El-Hajj, and Sarah Nadi. [n. d.]. Metric-based
Library Comparison Website. http://smr.cs.ualberta.ca/comparelibraries/

[7] Fernando López de la Mora and Sarah Nadi. 2018. An Empirical Study of Metric-
based Comparisons of Software Libraries. In PROMISE.

[8] Fernando López de la Mora and Sarah Nadi. 2018. Which Library Should I
Use?: A Metric-based Comparison of Software Libraries. In Proceedings of the
40th International Conference on Software Engineering: New Ideas and Emerging
Results (ICSE-NIER ’18). ACM, New York, NY, USA, 37–40. https://doi.org/10.
1145/3183399.3183418

[9] Edward L. Deci and Richard M. Ryan. 2002. Handbook of self-determination
research. University of Rochester Press.

[10] IntelliJ Platform SDK DevGuide. Last accessed: 2019. Program Structure Interface
(PSI), https://www.jetbrains.org/intellij/sdk/docs/basics/architectural_overview/
psi.html.

[11] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N Nguyen. 2015. Boa:
Ultra-large-scale software repository and source-code mining. ACM Transactions
on Software Engineering and Methodology (TOSEM) 25, 1 (2015), 1–34.

[12] Rehab El-Hajj and Sarah Nadi. [n. d.]. LibComp plugin. https://github.com/
ualberta-smr/LibCompPlugin

[13] ernando López de la Mora, Sarah Nadi, and Rehab El-Hajj. [n. d.]. Library Metric
Scripts. https://github.com/ualberta-smr/LibraryMetricScripts

[14] Rachel L. Franz, Barbara Barbosa Neves, Carrie Demmans Epp, Ronald Baecker,
and Jacob O. Wobbrock. 2019. Why and How Think-Alouds with Older Adults
Fail: Recommendations from a Study and Expert Interviews. Springer International
Publishing, Cham, 217–235. https://doi.org/10.1007/978-3-030-06076-3_14

[15] L. Hattori andM. Lanza. 2010. Syde: a tool for collaborative software development.
In 2010 ACM/IEEE 32nd International Conference on Software Engineering, Vol. 2.
235–238. https://doi.org/10.1145/1810295.1810339

[16] Andre Hora and Marco Tulio Valente. 2015. apiwave: Keeping track of api popu-
larity and migration. In IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 321–323.

[17] Enrique Larios-Vargas, Maurício Aniche, Christoph Treude, Magiel Bruntink, and
Georgios Gousios. 2020. Selecting third-party libraries: The practitioners’ per-
spective. In ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering (ESEC/FSE).

[18] B. Lin, F. Zampetti, G. Bavota, M. Di Penta, and M. Lanza. 2019. Pattern-Based
Mining of Opinions in Q A Websites. In 41st IEEE/ACM International Conference
on Software Engineering (ICSE). 548–559.

[19] Fernando Lopez de la Mora. 2018. Providing Software Library Selection Assistance
By Using Metric-Based Comparisons. Master’s thesis. University of Alberta.

[20] Stas Negara, Nicholas Chen, Mohsen Vakilian, Ralph E. Johnson, and Danny Dig.
2013. A Comparative Study of Manual and Automated Refactorings. In ECOOP
2013 – Object-Oriented Programming, Giuseppe Castagna (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 552–576.

[21] Marco Piccioni, Carlo A Furia, and Bertrand Meyer. 2013. An empirical study
of API usability. In ACM/IEEE International Symposium on Empirical Software
Engineering and Measurement. IEEE, 5–14.

[22] Gias Uddin, Olga Baysal, Latifa Guerrouj, and Foutse Khomh. 2019. Understanding
how and why developers seek and analyze api-related opinions. IEEE Transactions
on Software Engineering (2019).

[23] Gias Uddin and Foutse Khomh. 2017. Mining API aspects in api reviews. In
Technical Report.

[24] G. Uddin and F. Khomh. 2017. Opiner: An opinion search and summarization en-
gine for APIs. In 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE). 978–983.

[25] L. Xavier, A. Brito, A. Hora, andM. T. Valente. 2017. Historical and impact analysis
of API breaking changes: A large-scale study. In 2017 IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering (SANER). 138–147.
https://doi.org/10.1109/SANER.2017.7884616

https://mvnrepository.com/
https://doi.org/10.1145/57167.57203
https://github.com/ualberta-smr/LibraryMetricScripts
https://github.com/ualberta-smr/LibraryMetricScripts
http://smr.cs.ualberta.ca/comparelibraries/
https://doi.org/10.1145/3183399.3183418
https://doi.org/10.1145/3183399.3183418
https://github.com/ualberta-smr/LibCompPlugin
https://github.com/ualberta-smr/LibCompPlugin
https://github.com/ualberta-smr/LibraryMetricScripts
https://doi.org/10.1007/978-3-030-06076-3_14
https://doi.org/10.1145/1810295.1810339
https://doi.org/10.1109/SANER.2017.7884616

	Abstract
	1 Introduction
	2 Related Work
	3 Metric-based Library Comparison
	4 LibComp Overview
	4.1 Usage Overview
	4.2 LibComp Interaction Data at a Glance

	5 Implementation Details
	6 Future Work
	References

