
Securing Your Crypto-API Usage Through Tool

Support - A Usability Study

Stefan Krüger, Michael Reif

Independent

krueger.stefan.research@gmail.com

Anna-Katharina Wickert

Technische Universität Darmstadt

lastname@st.informatik.tu-darmstadt.de

Sarah Nadi, Karim Ali

University of Alberta

nadi, karim.ali@ualberta.ca

Eric Bodden, Yasemin Acar

University of Paderborn

eric.bodden@uni-paderborn.de

Mira Mezini

Technische Universität Darmstadt

mezini@informatik.tu-darmstadt.de

Sascha Fahl

CISPA Helmholtz-Center

for Information Security

sascha.fahl@cispa.de

Abstract—Developing secure software is essential for pro-
tecting passwords and other sensitive data. Despite the
abundance of cryptographic libraries available to developers,
prior work has shown that developers often unknowingly
misuse the provided Application Programming Interfaces
(APIs), resulting in serious security vulnerabilities. Eclipse
CogniCrypt is an IDE plugin that aims at helping developers
use cryptographic APIs more easily and securely by providing
three main functionalities: (1) it provides a use-case-oriented
view of cryptographic APIs and guides the developer through
their configuration, (2) it generates the code needed to accom-
plish the chosen use case based on the selected choices, and
(3) it continuously analyzes the developer’s code to ensure
that no API misuses are introduced later. However, so far the
effectiveness of CogniCrypt was never empirically evaluated.
In this work, we fill this gap through a controlled experiment
with 24 Java developers. We evaluate the tool’s effectiveness
in reducing API misuses and saving developer time. The
results show that CogniCrypt significantly improves code
security and also speeds up development for cryptography-
related tasks. The feedback received during the study suggests
that developers particularly appreciate CogniCrypt’s code
generation. Its static-analysis is valued for keeping the code
up-to-date. Yet, the further integration of generated code
into a developer’s project still presents a major challenge.
Nonetheless, our results show that CogniCrypt effectively
helps application developers produce more secure code.

Index Terms—component, formatting, style, styling, insert

I. Introduction

Entrusting sensitive data such as credit-card information or

passwords to digital devices has become the norm. To secure

this data, application developers need to leverage crypto-

graphic algorithms. As a result, a multitude of cryptographic

Application Programming Interfaces (APIs) have been devel-

oped for most of the major programming languages over

the years. These APIs provide functionalities such as digital

signatures, encryption algorithms, and hashing functions that

can provide the required protection. Unfortunately, previous

research has shown that many application developers do not

correctly use these cryptographic APIs, leading to serious

security vulnerabilities [? ? ?] such as leaking passwords or

insecure encryptions.

Previous work investigated why developers struggle with

cryptography APIs and what solutions they deem fit to

solve their problems [?]. The authors concluded that de-

velopers desire higher-level abstractions in terms of tasks.

These abstractions can be in terms of more use-case-based

documentation, use-case-based API design, or tooling that

helps them write better code for these use cases and alerts

them of any problems. Additionally, developers desire sup-

port for selecting the correct cryptographic algorithms and

configurations. In response, ?] proposed CogniCrypt, an

Eclipse-based assistant for cryptogtaphic APIs, that addresses

some of these problems. CogniCrypt is targeted at application

developers who need to use cryptographic APIs but are not

necessarily cryptography experts. In particular, CogniCrypt

aids developers by providing a code generator for several

cryptographic use cases as well as a suite of code analyses

guaranteeing the correct usage of common cryptographic

APIs. ? ? ?] argue that this mix of code generation and

code analysis leads developers to select the right solutions

for their projects as well as make sure the implementation

is correct. However, these claims have not been empirically

investigated, leaving the question whether CogniCrypt may

reduce cryptographic misuse unanswered.

In this paper, we bridge this gap by conducting a controlled

experiment to evaluate the usefulness of such an assistance

tool from the developer’s perspective. Our experiment in-

volves 24 participants from two universities. We employ a

within-subjects design [?] where each participant performs

two tasks, one using CogniCrypt and one using the plain

Eclipse IDE. Our evaluation focuses on answering the fol-

lowing research questions:

RQ1 Does the use of CogniCrypt improve the functional

correctness of cryptography application code? We are

interested to see if participants who use CogniCrypt

end up producing more functional code for a given

task. We measure functionality by manually assessing

participants’ code for functionality based on a func-

tionality scoresheet we developed.

RQ2 Does the use of CogniCrypt improve the security of

cryptography application code? Given the main claims

of CogniCrypt, we are interested to see if participants

who use CogniCrypt do end up producing more secure

code. We measure security in terms of how many

cryptographic API misuses they make.

RQ3 Does the use of CogniCrypt shorten the time taken to

write cryptography application code? Given its task-

based nature, CogniCrypt is supposed to save the time

needed to research and understand the various details

of cryptography APIs. We are interested to see if this

indeed holds. Do participants using CogniCrypt end up

finishing the cryptography tasks faster?

RQ4 Do developers perceive CogniCrypt to be more usable

than plain Eclipse? Since the usability of any tool

impacts its long-term adoption, we are also interested

to evaluate participants’ perception of CogniCrypt. We

measure usability through the Net Promoter Score

(NPS) [?] and direct written feedback by participants.

RQ5 What obstacles do developers still face with CogniCrypt?

When users face roadblocks while using a tool, they

might stop using it, even if they consider it otherwise

usable. From written feedback, we therefore also derive

obstacles participants report.

Our results show that there is a statistically significant

improvement in functionality and security scores as well

as completion times for participants using CogniCrypt over

regular Eclipse. Moreover, the majority of participants using

Eclipse could not finish the given tasks in the allotted

time, while more than 80% of participants using CogniCrypt

finished their given task. Overall, the results provide strong

evidence that CogniCrypt can indeed help developers write

more secure code faster.

II. CogniCrypt

CogniCrypt [? ?] is an assistance tool for cryptographic

APIs. It has been integrated with the widely used integrated

development environment (IDE) Eclipse [?]. Its main features

are a code generator CogniCryptgen and a static analysis

CogniCryptsast. We only give a brief description of the

tool and refer to the tool paper by ?] for a more detailed

discussion of features and supported use cases.

The code generator CogniCryptgen supports four common

use cases of cryptography as the screenshot in Figure 1

shows. These include data encryption and establishing a TLS

communication channel. The CogniCrypt code generator uses

a wizard to guide the developer through the configuration

process of the generated code. First, a user can select the

use case they wish to perform from the four pre-defined use

cases. For CogniCryptgen to configure the correct solution,

it may ask the user several questions (e.g., data type of plain

text or whether the server or client side is implemented). The

questions are intended to require little cryptography knowl-

edge, yet still allow CogniCryptgen to tailor the solution

to the user’s use case. As a last step before CogniCryptgen

generates the code into the user’s project, they have to

select a file. This file is used by CogniCryptgen to place

Fig. 1: CogniCrypt’s selection screen.

a new method that showcases how to make use of the

actual implementation of the use case. This method simplifies

the integration of CogniCryptgen’s code into the remain-

der of the user’s project. The actual implementation code

comprises wrapper code around existing widely used Java

cryptographic APIs (e.g., Java Cryptography Architecture [?
], Java Secure Socket Extension [?]) a developer may use

to implement these use cases themselves. CogniCryptgen

generates this code into separate classes into the package

’cognicrypt.crypto’. To support this process further and also

the evolution, modification, and refactoring of the generated

code by the user, CogniCrypt also comprises a static misuse

detector CogniCryptsast. By default, CogniCryptsast is ap-

plied every time the user saves a source file. However, they

may also disable automated execution and trigger it through

a button in the toolbar or via the project context menu of the

package explorer. For all cases, CogniCrypt shows misuses as

regular Eclipse warnings. In a CogniCrypt preference menu,

the user can also select the severity of warnings based on

the type of misuse.

In the backend, both CogniCryptgen and CogniCryptsast

make use of the specification language CrySL [?]. When

bootstrapped with a set of CrySL rules, CogniCryptsast the

developer’s code on the fly in Eclipse for its compliance with

the constraints on parameter values, forbidden methods, and

usage patterns defined in them. CogniCryptgen, on the other

hand, uses use-case-specific Java code templates with gaps

where code using Crypto APIs in a full implementation of

the respective use case would be. To generate the full im-

plementation, CogniCryptgen applies the appropriate CrySL

rules to the right template to fill the gaps [?].

TABLE I: Study Tasks for Participants

Name Goal Program Stub Test Cases

FE Encrypt a file
Reads file and

writes it back to disk

write of ciphertext-file was successful

ciphertext-text file existence

ciphertext file is not empty

ciphertext file is not same as plaintext-file

TLS

Send specific message to

a server via TLS connection

Message that should

be sent is defined

correct message

incorrect message (4x)

III. Experimental Design

We next describe the controlled experiment we designed

to address this study’s goal.

A. Object of the Experiment and Methodology

To measure CogniCrypt’s effectiveness and answer our five

research questions, we compare the cryptography code soft-

ware developers write with and without CogniCrypt. To this

end, we designed the experiment such that each participant

is asked to implement two programming tasks that involve

cryptography. For one of them, they are allowed to use

CogniCrypt, for the other one they use a regular Eclipse. We

compare against a regular Eclipse to most closely resemble

an everyday working environment of application developers.

In the following, we will refer to the environments as “CC”

(for CogniCrypt) and “EC” (for EClipse).
We follow a within-subjects design to ensure that we

can observe the effect of CogniCrypt per participant and

avoid possible biases or population differences caused by the

distribution of participants among two separate groups [?]. A
within-subjects design allows us to run the experiment with a

smaller number of participants than would have been needed

for a between-subjects design. It is also resilient towards

variability in individual skill level since it compares scores of

one participant in one condition with the scores of the same

participant in a different condition. This design further pro-

vides a better chance of observing any statistical differences

between the two tested environments EC and CC. To avoid

learning/practice effects as well as fatigue effects that might

influence the solutions, we follow a Latin square design [?
] where the order of the tasks and environments presented

to the participants is assigned in a way such that each task

appears in each sequential position an equal number of times.

In other words, an equal number of participants receive each

possible ordering of tasks and environments.

Before each task, we ask participants to read through a

tutorial consisting of a handful of lines of text and some

screenshots on the environment they would be using in the

next task. The experiment instructor asks them to make

use of the features mentioned and explained in the tuto-

rial as much as possible while working on the task. We

have, however, avoided providing any particular in-depth

documentation on CogniCryptgen and CogniCryptsast. This

decision—if anything—puts CogniCrypt at a disadvantage

as participants are more likely to be familiar with regular

Eclipse than with CogniCrypt and every tool comes with a

learning curve. However, we did not want to unnecessarily

bias participants since we believe that the more documenta-

tion we were to provide, the clearer it would be which of the

two tools was the one we were evaluating. Such bias would

severely limit the value of the feedback participants give us

on CogniCrypt’s feedback in the survey.

While solving the tasks, participants are allowed to use

any online resources they want to, apart from email and chat

applications. We also prime participants by enhancing task

descriptions with requests to participants to pay extra atten-

tion to security while implementing the task. The rationale

is that previous research strongly suggests that developers,

in the context of user studies, do not bother with security

concerns unless explicitly requested [?].

We design the two tasks shown in Table I. For the tasks,

we implemented two small Java program stubs (involving

1–3 classes) that participants had to modify during the

experiment. For each task, participants need to add certain

security functionality to the existing program stub. Task FE

requires the participant to implement a secure file encryption

using a password. The program stub we provided reads the

file into a string and then stores that string into a file again.

In task TLS, we expect participants to implement a TLS client

whose server runs locally on their machine at port 9999. For

this task, the stub defines the message that should be sent.

It also contains a key-store file that stores the certificate the

TLS connections must use when connecting to the server.

The task description pointed participants to this file.

With each stub, we provide several unit tests, each cov-

ering one requirement for functional correctness. The task

descriptions explain that a task is completed once all unit

tests pass. They also point participants to the exact method

stubs to implement, such that they can run the unit test

before submitting their code. We have further enhanced the

program stubs with todo-comments at the program locations

that require participants’ extensions.

When participants use a bare Eclipse, they are required

to write code that implements the task according to se-

curity and functionality criteria we define below and in-

tegrate that code into the stub. When participants may

use CogniCrypt, the tool can generate code that imple-

ments the criteria for them. Here, the challenge is no

longer about interacting with Crypto APIs directly and

instead becomes about selecting the right task in Cogni-

Cryptgen, answering its configuration questions correctly

and integrating the templateUsage() into the provided

TABLE II: Functionality and Security Criteria for Study Tasks

Name Functionality Security

FE

Writing of ciphertext file was successful (test)

Ciphertext file existence (test)

Ciphertext file is not empty (test)

Ciphertext file is not equal to plaintext file (test)

Password used for key generation

Using some kind of encryption

Encrypting the whole plaintext

Using secure encryption configuration

Using secure key deriviation

Password has never been a String

Using secure hashing algorithm for key derivation

Random salt of at least 16 byte

Secure preparation of encryption

TLS

Correct message (test)

4x Incorrect Message (test)

Using provided parameters

Setting correct key store

Flushing of write channel

Closing Connection

Using TLS

Using secure SSL socket factory provider

Using secure cipher suites

Using secure tls protocols

stub. There are several correct configurations of CogniCrypt

for both tasks and, consequently, multiple different correct

templateUsage() for both tasks, too. If configured

correctly, the templateUsage(), as shown in Figure 2,

for task FE would take a password and String plain text and

contain three three method calls that subsequently generate

a key from the password, encrypt the plaintext using the

key, and decrypt the resulting ciphertext with the same

key. In case of the TLS task, one possible correct method

templateUsage() is shown in Figure 3. The method

takes the host and port and first instantiates an object of

another generated class, which handles TLS connections.

Subsequently, it calls three methods on this object, one

to send data, one to receive data and one to close the

connection.

public static boolean templateUsage(String plainText, char[]
encryptionPassword) throws GeneralSecurityException {

SecureEncryptor encryptor = new SecureEncryptor();
SecretKey key = encryptor.generateKey(encryptionPassword);

String ciphertext = encryptor.encrypt(plaintext, key);
encrypt.decrypt(ciphertext, key);

}

Fig. 2: TemplateUsage Method for ENC task

public static void templateUsage(String host, int port) {
//You need to set the right host (first parameter) and the
port name (second parameter). If you wish to pass an IP
address, please use overload with InetAdress as second
parameter instead of string.

TLSClient tls = new TLSClient(host, port);
boolean sendingSuccessful = tls.sendData(""); // This call
sends the passed message over the connection.

String data = tls.receiveData(); //This call makes the
socket listen for incoming messages.

tls.closeConnection(); // This call properly closes the
connection. Do not forget it.

}

Fig. 3: TemplateUsage Method for TLS task

The two environments reflect realistic development set-

tings that, as pointed out above, each come with their own

challenges. When developers may not use CogniCrypt, they

have to gather the domain and API-usage knowledge for

Crypto API themselves. When they may use the tool, they

still need to use it correctly and integrate the generated code

properly. Switching the order of environments additionally

avoids learning effects. Consequently, we believe both the

environments as well as the measurements described below

evaluate CogniCrypt’s effectiveness fairly and appropriately.

In summary, this study design leaves us with four different

conditions. Condition 1 has the participant start with task FE

using the regular Eclipse and then go on to implementing

task TLS with CogniCrypt (FE/EC→TLS/CC). In condition

2, the order is swapped (TLS/CC→FE/EC). For condition

3, a participant first works on task TLS in regular Eclipse

and subsequently continues with task FE in CogniCrypt

(TLS/EC→FE/CC). Condition 4 once again switches the order

of configurations from condition 3 (FE/CC→TLS/EC).

B. Participants and Experiment Context

We recruited 32 graduate students at two universities

to participate in the experiment. All students were either

currently taking a course including Java development tasks

or had completed such a course already, e.g., a course for

which they had implemented several static program analyses

in Java. We considered this experience sufficient in terms of

Java programming skills. We did not filter based on students’

knowledge of Eclipse. During our recruitment, we did not

mention cryptography to not bias our sample set towards

students who feel more comfortable with cryptography. Par-

ticipation in the study was voluntary and not required as

part of a course.

C. Collected Measurements

To answer RQ1 and RQ2, we have compiled a score

sheet of requirements that the implementation of each task

needs to exhibit in order to count as functionally correct

or secure, respectively. Table II shows the criteria for both

tasks. The test cases that we enhanced each stub with also

covered requirements for functional correctness that we were

able to cover through a unit test case. In Table II we mark

the requirements that correspond to a test case in a stub

by ‘(test)’. We measure correctness and security of each

participant by first running the test cases on their code and

subsequently manually checking the compliance with the

remaining functionality as well as the security criteria. The

percentage of items covered are the functionality and security

score of each task, respectively.

For an implementation of the FE task to be considered

correct, a ciphertext file must exist that is different from the

plaintext file, but not empty. The password provided through

the stub must also be used to generate a cryptographic

key. Finally, some form of encryption must be used—even

if it is a self-implemented one—that encrypts the whole

plaintext. Security-wise, the encryption configuration must

be secure. That is, no insecure algorithms (e.g., DES) or block

modes (e.g., ECB) must be used. The key must be derived

securely from the password. That requires (1) the password

to be used, (2) the key derivation to be conducted through

PBEKeySpec, and (3) the PBEKeySpec to be used se-

curely. In addition, the encryption must be prepared securely.

That is, depending on the cipher mode the participant uses,

they may need to provide an Initialization Vector (IV).

To implement task TLS correctly, the client must be able

to send a message and receive the server’s answer. When

it sends the correct message, it should also handle the

appropriate response from the server. The client must use

the correct IP and port, set the correct key store, flush the

write channel, and close the connection at the end. From

a security perspective, we require the implementation to

actually use TLS. The TLS connection must also be set up

using an appropriate socket, e.g., through the Java Secure

Socket Extension (JSSE). Lastly, the TLS connection must be

configured to use secure cipher suites and only enable secure

TLS protocols. A default configuration of a TLS connection

set up through the JSSE allows both insecure cipher suites

and TLS protocols. Participants therefore have to configure

these themselves. Participants who cannot use CogniCrypt

thus have to not only discover on their own that the default

configuration is insecure, they also have to find out how to

enable secure cipher suites and TLS protocols only.

To answer RQ3, we also measure the time participants

take to complete the task. We consider completion time as

the time from when a participant starts to read the task

description until they close the development environment.

We intentionally include any time spent outside the IDE

looking at online resources as we believe this is part of the

time taken to complete the task. In other words, we do not

pause the timer if the IDE loses focus.

D. Survey Questionnaire

To answer RQ4 and RQ5, we want to understand the steps

developers take to solve a task. However, to ensure a natural

work setting and to avoid inaccuracies in measuring com-

pletion time, we do not follow a “think aloud” approach [?
]. Instead, we ask participants to fill out questionnaires after

each task. In these questionnaires, we ask about the perceived

difficulty of the task, the clarity of the task description, and

their experience with the environment. The questions are

available in Appendix A. We used Google Forms to create

all three questionnaires.

E. Pre-Testing

We first conducted a pilot study with five test participants.

For the purpose of the pilot study, we followed the same

study design as described above, apart from one aspect:

from participants of the pilot study we aimed at receiving

feedback to refine our study design if necessary and were

not attempting to take exact time measures. As a result, for

the pilot study we did follow the “think aloud” approach to

gather direct feedback from our pilot-study participants.

Participants informed us of ambiguities in the task de-

scriptions and confusing oddities in some UI elements of

CogniCrypt. For the final study, we revised the formulations

in questions and re-designed the respective UI elements. All

the pilot study participants finished both tasks, including

questionnaires, within 45 to 60 minutes. In the final exper-

iment, we hence told participants to finish within an hour.

After half the time, we reminded them to move on to the

second task if they had not already. From the results we

report in this work, none have been gained from the pilot

study.

IV. Results

From originally 32 participants, we had to exclude the re-

sults of eight because they neither executed CogniCryptgen

nor CogniCryptsast throughout the whole study. We had not

anticipated this scenario and had not set up any telemetry or

questions in the evaluation survey. Thus, we have no further

insights on why these eight participants refrained from using

CogniCrypt. For the remaining 24 (P01 – P24) we show the

participant distribution among the conditions in Table III. We

manually analyzed the participants’ code and their survey

answers only for the remaining 24 participants. The manual

analysis was conducted by the first and the second author.

TABLE III: Conditions & Participants

Condition Particpants

EC/FE → CC/TLS 7

CC/TLS → EC/FE 4

EC/TLS → CC/FE 7

CC/FE → EC/TLS 6

The agreement ratio for functionality and security score

are 92% and 90%, respectively. For all differences in rating,

the two raters negotiated until they reached a compromise.

Table IV provides a complete overview of all results of the

24 participants.

A. Functionality (RQ1)

For each solution, we first investigate whether it actually

implemented the task completely. To this end, we first run

the test cases. In the following, we will distinguish between

running and broken solutions. For us to consider a solution

running, all the provided unit test cases must terminate with-

out exception, even if they fail. We consider a solution broken,

on the other hand, when at least one of its test cases throws

an exception. We make this distinction because non-running

programs are distinctly non-functional in comparison to a

program that does not implement all functionality, but at

least terminates. To appropriately account for this, we award

all non-running programs zero functionality points regardless

of the state of their implementation and discard them from

the remainder of this discussion.

Our results indicate that there is a noticeable difference

between the running/broken ratios of solutions that have

been implemented using CogniCrypt and those without.

Without CogniCrypt, participants only produced running

code for the FE task in six out of eleven cases. For task

TLS, only two participants managed to get the test cases

working. Two further participants succeeded at establishing

a connection, but failed at sending data, causing the test cases

to hang. Everyone else but two participants did not manage

to establish a connection to begin with. In contrast, with

CogniCrypt, participants produced running code for all but

one case for both task FE (twelve out of thirteen) and task

TLS (ten out of eleven).

Participant P07 who did not manage to complete task

FE with CogniCrypt did use CogniCryptgen and had it

generate the method templateUsage() into the correct

class. However, they then ignored the generated code and

attempted to implement a custom solution that throws an

exception when the test cases are run. Participant P15 failed

to implement task TLS for a similar reason. They also used

CogniCryptgen to generate code, but for the encryption use

case. They subsequently tried to manually set up the TLS

connection and used the generated templateUsage()
only to encrypt the message. As their code does not compile,

the test cases cannot be executed.

As mentioned above, we will limit the following discussion

to solutions that can be run. Figure 4 shows the functionality

scores across all four combinations of environment/program-

ming task. The score is shown in percentages, that is, a score

of 2 out 4 is shown as 0.50. In our following discussion, when

we justify scores, we refer to individual points instead of the

percentages.

a) FE: For task FE, three of the six participants who

completed the task without CogniCrypt achieve a full func-

tionality score, resulting in a mean functional score of 1.

We deducted one point from the other three solutions be-

cause they all failed to derive the encryption key from the

password. From the twelve participants who implemented

task FE successfully with CogniCrypt, eight did so with a

full functionality score. Participant P23 generated code for

the wrong use case (”Secure Password Storage”) and then

attempted to use it in a custom-made encryption. The remain-

ing three participants did manage to run CogniCryptgen, but

then failed to integrate the generated code in one way or

another. P02 completed the implementation of the encryption,

but did not manage to store the result of the encryption in

the variable the stub writes into the ciphertext file. Hence, the

ciphertext file has the same content as the plaintext, although

the encryption itself was implemented in a functionally

correct manner. P01 ignored the generated code. They even

went so far as to delete the method templateUsage()
from the Java file they coded in, but left the other gener-

ated code untouched. Instead, they implemented a custom

solution that they did not manage to finish. Lastly, P09

only made use of the key-generation code and attempted to

implement a custom encryption solution for the data using

CipherOutputStream. However, this solution does not

encrypt the whole plaintext.

b) TLS: For task TLS, the results are much clearer than

for task FE. First, as mentioned above, only two participants

who did not use CogniCrypt for the task, did actually produce

running code. Those two received two (P23) and three (P21)

out of nine points on the functionality score, respectively. In

neither submission do any of the test cases pass nor do they

set the correct keystore. P23, in addition, fails to flush the

channel to the server. In contrast to that, all ten participants

who implemented task TLS using CogniCrypt received full

points on the functionality score. They all generated code

using CogniCryptgen and integrated it properly into the

program stub.

c) Summary: In conclusion, for the eight participants

who implemented task FE with CogniCrypt and received

full points on the functionality score, CogniCrypt worked

as intended. Some participants did, however, face problems.

In one case, the participant was not clear about which use

case they need to pick. For the remaining three, CogniCrypt

failed at properly communicating that and how they need

to integrate the generated code into their own application

code. On the other hand, all but two participants attempting

to implement task TLS without CogniCrypt failed to so, while

all but one who did use CogniCrypt succeeded. For both

tasks, we found participants achieved statistically significant

better scores using a Wilcoxon signed-rank test for paired

TABLE IV: Participants Overview

Participant Condition Score Task 1 Score Task 2
Task 1 Task 2 CogniCrypt Functionality Security CogniCrypt Functionality Security

P01 TLS FE # 0/9 0/4 4/7 0/6

P02 FE TLS 5/7 5/6 # 0/9 0/4

P03 FE TLS # 6/7 1/6 9/9 2/4

P04 TLS FE # 0/9 0/4 7/7 6/6

P05 FE TLS 7/7 6/6 # 0/9 0/4

P06 FE TLS # 6/7 1/6 9/9 4/4

P07 TLS FE # 0/9 0/4 0/7 0/6

P08 FE TLS # 7/7 6/6 9/9 4/4

P09 TLS FE # 0/9 0/4 6/7 6/6

P10 FE TLS # 0/7 0/6 9/9 4/4

P11 TLS FE 9/9 4/4 # 0/7 0/6

P12 FE TLS 7/7 6/6 # 0/9 0/4

P13 FE TLS 7/7 6/6 # 0/9 0/4

P14 FE TLS # 7/7 1/6 9/9 4/4

P15 TLS FE 0/9 0/4 # 0/7 0/6

P16 TLS FE # 0/9 0/4 7/7 5/6

P17 TLS FE 9/9 4/4 # 6/7 1/6

P18 TLS FE 9/9 4/4 # 0/7 0/6

P19 FE TLS # 7/7 4/6 9/9 4/4

P20 TLS FE # 0/9 0/4 7/7 6/6

P21 FE TLS 7/7 6/6 # 3/9 2/4

P22 FE TLS # 0/7 0/6 9/9 4/4

P23 TLS FE # 2/9 2/4 7/7 6/6

P24 FE TLS 4/7 1/6 # 0/9 0/4

 indicates that the task was performed with CogniCrypt and # without, respectively.

0.25

0.50

0.75

1.00

FE TLS
Task

F
un

ct
io

na
l S

co
re

CogniCrypt Eclipse

Fig. 4: Functionality Score

data (p < 0.05).
Further, we used the Wilcoxon signed-rank test to check

for correlations of functionality score and self-reported ex-

perience in programming (Q15–Q17), Eclipse (Q18–Q20),

security or cryptography (Q21–Q25) or general demographics

(Q26–Q32), but were not able to find any. Similarly, we have

not found any correlations between functionality score and

order of task or tool.

B. Security (RQ2)

We observe similar trends for the security score. We show

the distribution over the four environment/task combinations

in the box plot in Figure 5.

a) FE: For task FE, similar to the functional score,

we find again somewhat ambiguous results, although much

less so than for the functional score. Only one of the six

participants who implemented task FE without CogniCrypt

achieved a full security score. Participant P19 achieved four

out of six security points, only lacking a random salt, and

choosing an insecure iteration count. The remaining four

participants all received one out of six points. From the

twelve participants who did use CogniCrypt, eight received a

perfect score. We removed one point each for participants P02

and P16 because they transformed the password from a char
array into a String. Neither of the two ended up using the

String password variable, making it effectively dead code and

likely to be optimized away by the Java compiler. We also

assume this code would have been cleaned up in any real-

world setting, but decided to remove the point nonetheless

because the code as-is is insecure. P01 and P23’s custom

solutions, which we already discussed above, do not hold

any security guarantees. While, for instance, P01 generates

a cryptographic key from the password (which is why they

get a point on the functional score for this requirement),

they do so using a number of String, hashing, and array-

copy operations. The code also transforms the password into

a String. In total, P01’s solution receives zero points.

b) TLS: Participants who implemented task TLS with

CogniCrypt all received a perfect security score. This is

because the code generated through CogniCrypt only enables

secure cipher suites and TLS protocols. The two participants

who implemented at least a running program for task TLS

without CogniCrypt achieved zero (P023) and two points

(P021), respectively. We removed two points for participant

P021 because they neglected to configure the connection in

terms of cipher suites and TLS protocols.

We also checked the security of the broken solutions for

task TLS developed without CogniCrypt to provide at least

some kind of evaluation. None of the ten participants would

0.00

0.25

0.50

0.75

1.00

FE TLS
Task

S
ec

ur
ity

 S
co

re

CogniCrypt Eclipse

Fig. 5: Security Score.

receive more than two points because they display the same

problem as P21’s solution. For the reasons we explained

above, we do not include this data into the box plot, however.

c) Summary: In summary, participants fare better in

terms of security for both tasks when using CogniCrypt,

compared to when they try it without. As with the function-

ality score, we were able to show a statistically significant

improvement with CogniCrypt, through a Wilcoxon signed-

rank test for paired data (p < 0.05). For participants using

CogniCrypt, the only points detracted were for failing to

clean up the code and for complete custom-made solutions.

We have again checked for correlations with any of the

forms of experience we surveyed participants about in the

questionnaire as well as the order of tasks and tools using a

Wilcoxon signed-rank test, but could not find any.

C. Completion Time (RQ3)

We report the distribution of completion times in Figure 6.

As with functional and security score, we only report com-

pletion times for non-broken solutions. We first note that

completion times for participants using CogniCrypt spread

comparatively widely. For task TLS, P18 finished in six

minutes and thirty-two seconds, whereas it took P11 about

39 minutes and 30 seconds. The fastest successful participant

for task FE completed their work in not even two minutes. In

stark contrast, the participant who took the longest needed

about 42 minutes. We attribute this wide range to two

behaviours we observed while conducting the study when

walking around the room and watching participants over

the shoulder. Many participants, when they had CogniCrypt

available, first attempted to finish the task without using

either CogniCryptgen or CogniCryptsast. Most eventually

gave up, resorting to either launching CogniCryptgen’s wiz-

ard or triggering CogniCryptsast. Second, some participants

took longer than others to generate code for the correct

solution using CogniCrypt. Some appeared to struggle when

having to answer questions in CogniCryptgen’s wizard.

Others even generated code for an incorrect use case at first.

a) FE: When comparing the two plots for completion

time with task FE directly, participants are slightly faster with

CogniCrypt, although there is no statistical significance using

500

1000

1500

2000

2500

FE TLS
Task

C
om

pl
et

io
n

T
im

e
(s

ec
)

CogniCrypt Eclipse

Fig. 6: Completion Time.

one-sided paired Wilcoxon test. The slowest participant with

CogniCrypt is slower by several minutes than the slowest

participant without CogniCrypt. The diagram presents a

somewhat skewed picture, however, because more partici-

pants managed to finish when using CogniCrypt compared

to when not using it (twelve of thirteen vs. six out of eleven).

We find it likely that participants who took longer with

CogniCrypt would not have finished if they had not had it

at their disposal.

b) TLS: For task TLS, the median completion time

lies at around fourteen minutes when using CogniCrypt.

The two participants who finished TLS without CogniCrypt

completed their work faster. However, as both the functional

and security scores of the two indicate, their solutions are

far from being actually complete and secure. On top of that,

we also argue again that many participants who took longer

with CogniCrypt would not have produced running code

without it. The high number of participants who did not

produce running code without CogniCrypt serves as a strong

indicator for this claim. Given these two observations, we

conclude that CogniCrypt improves the completion time for

this task.

c) Summary: We conclude that participants are gen-

erally faster with CogniCrypt. We come to this conclusion

because of (a) the higher completion rates in a setting with

limited time available and (b) the lower median completion

times for the solutions that were completed. Where Cogni-

Crypt seems to be slower than regular Eclipse, we argue the

slower speed to be more indicative of more people being

enabled to finish a task to begin with.

D. Usability (RQ4)

Participants generally expressed positive views on Cogni-

Crypt’s usability, but provided criticism relating to the in-

tegration with Eclipse of both CogniCryptgen and Cogni-

Cryptsast. In contrast, regular Eclipse overall received sub-

stantially worse reviews by participants. These results are

reflected in the both tools’ NPS values. NPS generally mea-

sures user satisfaction and ranges from -100 to 100, whereas

any value above 50 is considered excellent and values below

0 are considered bad [?]. CogniCrypt receives an NPS value

of 33.33, a result that is generally considered good, but not

excellent [?]. Regular Eclipse, on the other hand, receives an

NPS of -54.17.

When asked for more concrete feedback (Q7/Q14), par-

ticipants especially praised CogniCryptgen (P02 – P07, P09,

P11, P12, P16, P19, P21). P02 notes that they ‘have never

worked on encryption before in Java.‘ However, they would

‘strongly say that [CogniCrypt] will be very helpful with

prior knowledge [of the tool].‘ P05 adds they found Cogni-

Cryptgen useful and that it was ‘easy to choose input and

generate the encryption function by the tool. It was very

user-friendly for developer since there was no further need to

read about the encryption function and security/authenticity

of that encryption library‘. Both aspects highlighted by P05—

the high effectiveness for developers with low experience

and that CogniCrypt lifts a burden off a developer because

it takes care of security features—are also shared by other

participants. P19, for instance, finds CogniCryptgen ‘very

helpful‘ because they could ‘assume[…] that [the] generated

code [was] secure, which saved a lot of time searching for

documentation on security requirements‘. P16 also highlights

the usefulness for cryptography novices: ‘Since I have never

worked on anything similar before, the code generator ([for task

TLS]) was very helpful for me to get an idea about what I

have to do. It was easy to use, since every single configuration

was asked.‘ P12 agrees as they ‘haven’t worked that much

with encryption so far, which is why the code generation was

especially helpful.‘ P04 highlights the effort that is saved

through CogniCryptgen, because they do not ‘have to search

the web for the right and required classes to get the job

done.‘ P03 goes so far as considering code generators like

CogniCryptgen necessary for ‘secure software engineering‘,

because ‘we can be sure our code is almost secure.‘

P06 appreciates CogniCryptsast as helpful because it de-

tected their use of an inappropriate block cipher mode for

the call Cipher.getInstance(‘AES‘). P13 tested

CogniCryptsast by purposefully introducing misuses to the

code and enjoyed that it found them. P23 praised CogniCrypt

to be ‘well integrated‘ and P20 found it generally ‘easier to

use‘.

a) Summary: CogniCrypt has fared significantly better

than Eclipse. Participants generally praise the ease of use and

the help they receive, in particular from CogniCryptgen. Fur-

thermore, CogniCrypt’s NPS result not only trumps Eclipse’s

NPS value by a large margin, but is considered good. How-

ever, it also shows that the tool still comes with limitations,

which we further discuss in the next section.

E. Obstacles (RQ5)

One obstacle several participants clearly faced was the in-

tegration of generated code into their project. This obstacle is,

on the one hand, demonstrated by the three participants we

described above who had CogniCryptgen generate code for

task FE, but then failed to properly call that code. However,

participants have also mentioned CogniCrypt’s shortcomings

in that respect in their feedback. P21 comments that ‘it

was difficult to find where the autmomatic generated code

is located‘. P01 requests the ‘comments should be improved

for auto-generated code‘, because it took them ‘a while to

understand what the generated code says and to identify

which part of the code is generated when [they] already have

[their] own code in the class. So there should be clear way

to separate automatic generated code from [their] own code.‘

P08 encountered the same problem as they needed time

to understand which classes CogniCryptgen had generated

for them to implement task TLS. When implementing task

FE, P13 struggled to identify, if the generated code would

already derive the key from the password or if they had

to implement that themselves. In the end, they did not

implement it themselves, because the tests passed.

One further problem with CogniCryptgen in particular

appears to be the usability of its wizard. As we noted above,

several participants had to go through multiple attempts of

generating code. The issue is also highlighted by P22 who

criticises that they at first ‘didn’t notice the first screen of

the wizard provided a choice, [they instead] mistook it for an

introductory page and just clicked ’continue’[, and were] then

confused that the code generated didn’t suit my needs‘.

The warning messages by CogniCryptsast provided an-

other major obstacle participants reported on. P13 rightly

complains that it ‘was confusing […] that the autogenerated

code throws errors (in [CogniCryptsast]), which on further

inspection are only in the decryption case and not applicable.‘

P02 ran into the same issue when they were ‘getting a[n] error

at [the encryption] method at line number 67. Which I could not

understand that what is exactly the problem.‘ The warnings the

two participants report of relate to long-known false positives

in CogniCryptsast that have been addressed since conducting

the study. P07 raises a further issue with CogniCryptsast’s

reporting: ‘But when we are using functions with more than

two arguments [CogniCryptsast only says] the parameter is

not properly generated, additionally it should also return info

about how to correct it or some possible description for the

developer to enhance the code‘. The warnings, both P02 and P07

refer to, CogniCryptsast displays for predicate violations. The

developers of CogniCrypt have indeed been struggling to find

a good wording for these kinds of violations and have been

editing CogniCryptsast warning messages for such misuses

upon feedback by users several times since CogniCryptsast’s

original publication [?]. This comment shows there is still

work to be done regarding this matter.

Lastly, P01 criticises that CogniCryptgen and Cogni-

Cryptsast ‘lack documentations, tooltips which detail the op-

tions they provide.‘ This point is valid for the study, its appli-

cability in practice, however, may be limited. As mentioned

before, we intentionally kept the documentation limited to

not unnecessarily bias participants. In real-world contexts,

users would have the documentation available on Cogni-

Crypt’s website
1
, which provides extensive introductions to

all its components.

a) Summary: We conclude that while CogniCrypt has

generally received favourable feedback, it still exhibits severe

usability shortcomings. Some participants have struggled

with integrating the code generated by CogniCryptgen, but

even more face problems understanding and interpreting

error messages by CogniCryptsast.

V. Discussion

Participants in our controlled experiment were signifi-

cantly faster in implementing application code that requires

using cryptography concepts. The code they produced was

significantly more functional and secure than when only

using Eclipse. Participants generally judge CogniCrypt to be

a useful and usable tool as demonstrated by its NPS score.

Our results therefore allow us to conclude for RQ1 to RQ3

that CogniCrypt has a significant positive impact on all three.

In addition, we can answer RQ4 such that developers do

indeed seem to view CogniCrypt as more usable than plain

Eclipse. Our study, in conclusion, provides strong evidence

that CogniCrypt is effective at combatting cryptographic

misuse.

However, there is still room for improvement. In response

to RQ5, we can report two main findings. First, when

it comes to integrating code by CogniCryptgen into their

application, a large subset of participants struggled because

they had trouble understanding what is happening in their

IDE when CogniCryptgen generated code. To help with the

situation, CogniCryptgen should inform users better. Cogni-

Cryptgen should enhance method templateUsage()
with a comment describing which pieces of code have been

generated, what their purposes are, and where they each

can be found. A second issue raised by participants revolves

around the error messages produced by CogniCryptsast,

in particular error messages on predicate-related misuses.

Participants find the warning messages too abstract and that

they expect too much knowledge of CrySL for the average

developer. They also criticise that they are not actionable, that

is, they do not provide help as to how to resolve them. One

possible avenue of future work might explore more focused

usability testing for CogniCryptsast’s error messages to A/B

test alternative phrasings. One might even stop showing

transitive predicate warnings entirely.

VI. Threats to Validity

Our sample set poses an internal threat to the experiment’s

validity because it consisted of only 32 graduate students

from two universities. That sample set is likely not represen-

tative of the whole Java developer community. However, we

argue that students are more likely to be less experienced in

programming, especially programming in a specific language,

than the average developer. We further assume grad students

are only, if at all, slightly unrepresentative in terms of

1
www.cognicrypt.org

security knowledge. If CogniCrypt manages to support the

demographic of students effectively, we expect it to fare even

better with professional developers as they will likely have

more experience with IDE-integrated code generators and

program analysers. Recent work by Naiakshina et al. [?]

supports this assumption empirically.

Our experiment further exhibits an ecological threat as

well. Although we tried to come up with seemingly realistic

tasks, both the task descriptions and the stubs are fairly

unlikely to be found in practice in exactly this manner.

The former rather resemble assignments in a programming

course, the latter are comparatively tiny. It is further ques-

tionable as to how far the regular-Eclipse condition can be

claimed to simulate an authentic environment for everyday

development. Developers often configure their editor and

IDEs to their liking. They also use a wide range of editors

and IDEs to develop in Java and some participants had

no experience in Eclipse. To mitigate this threat, we asked

the participants for their experience level with Eclipse and

found no statistically significant correlation with their scores

or completion rates in the study. On top of that, these

restrictions apply to lab studies in general and our study

does not display stronger limitations than other comparative

ones. As a result, we do not believe the setting albeit not

necessarily representative of developer’s work environment

to cause the study’s results to be of less significance.

VII. Related Work

In this section, we discuss tools similar to CogniCrypt and

how they are evaluated. We also relate our study to prior

work on empirical work about software security techniques.

A. Assistance for Cryptographic APIs

Apart from CogniCrypt, multiple tools have previously

attempted to address the misuse of cryptographic [? ? ? ?
] and other security [? ? ?] APIs. However, these tools are

limited to this misuse detection. On the other hand, tools

such as CDRep [?] and FireSecBugs take a more directly

corrective approach by repairing faulty programs.

In addition to the analysis these tools provide, CogniCrypt

aims at supporting developers additionally through a use-

case-based code generation that lifts the burden of handling

low-level cryptographic APIs from the developers. In addi-

tion, CogniCrypt allows the coverage of its analysis to be

expanded by means of API-usage specifications in an external

specification language.

?] suggest high-level abstractions on top of low-level cryp-

tographic APIs. Their higher abstraction levels automatically

avoid common misuses (e.g., hard-coded keys or initialization

vectors). The client programs using those abstractions end up

significantly smaller than semantically comparative programs

that use traditional libraries. The wrapper code generated

by CogniCrypt is similar as it lifts the abstraction level that

the developer interacts with. Unlike CogniCrypt, those high-

level abstractions are not use-case-based because they still

require developers to know which cryptographic concepts

they should use in a given use case. Consequently, developers

may still misuse them, and are not helped by a misuse

detector.

Apart from CogniCrypt by ?] and Fixdroid by ?], none

of the tools discussed above come with any form of IDE

integration. Additionally, only Fixdroid has been previously

evaluated in terms of usability and usefulness for developers.

The other tools have solely been evaluated in terms of their

capabilities to find misuses in existing applications. In light

of this existing body of research on fixing cryptographic-

API misuse, we identify an empirical gap with regard to

the effectiveness of combining code generation and misuse

detection. As a result, we have selected CogniCrypt as our

evaluation object for this study to work towards closing this

gap.

B. Evaluation of Other Software Security Techniques

Our experiments expand on previous empirical research on

the effectiveness on counter measures against software inse-

curity. Prior work has investigated several aspects relating to

software security: the role of a security-focused development

process [? ?], the content, length, and desired structure of

security warnings [?], the role of resources for security

knowledge [? ?], as well as the effect of explicitly requesting

developers towards writing secure code (i.e., priming) on its

security [? ? ?].

Our work most closely resembles, in design and goal, that

of ?]. The main difference lies in the object of evaluation.

CogniCrypt combines a static misuse detector with a code

generation, supports Java, and is integrated into Eclipse,

while Fixdroid is only equipped with an analysis, is limited to

Android, and integrates with Android Studio. Fixdroid further

only checks for a few hard-coded misuses, whereas Cogni-

Crypt’s analysis component may be parameterized by usage

specifications in CrySL. However, in contrast to CogniCrypt,

Fixdroid supports IDE-integrated fixes that are selectable by

users.

VIII. Conclusion

Cryptography can help secure sensitive data, but this

help often ends up ineffective because cryptography is not

integrate securely into applications. ?] have proposed the

cryptographic assistant CogniCrypt to tackle this problem

and support application developers write secure code. The

authors, however, did not empirically validate their claims. In

this paper, we have filled this gap by conducting a controlled

experiment investigating CogniCrypt’s capabilities in reduc-

ing cryptographic misuse. Through this experiment, we have

demonstrated CogniCrypt’s effectiveness. The tool signifi-

cantly improves how fast, functional, and secure developers

code cryptography applications. Participants’ criticism where

they mentioned it related mostly to implementation details

that can and should be addressed, but that also in no way

threaten the validity of the concept underlying CogniCrypt—

or even its concrete prototypical implementation.

IX. Acknowledgements

Funded by the Deutsche Forschungsgemeinschaft (DFG,

German Research Foundation) – SFB 1119 – 236615297 and by

the German Federal Ministry of Education and Research and

the Hessen State Ministry for Higher Education, Research and

the Arts within their joint support of the National Research

Center for Applied Cybersecurity ATHENE.

References

[] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon

Kim, Michelle L. Mazurek, and Christian Stransky. How

internet resources might be helping you develop faster

but less securely. IEEE Security & Privacy, 15(2):50–60,

2017.

[] Hala Assal and Sonia Chiasson. Security in the software

development lifecycle. In Fourteenth Symposium on

Usable Privacy and Security, SOUPS 2018, Baltimore, MD,

USA, August 12-14, 2018., pages 281–296, 2018.

[] Gary Charness, Uri Gneezy, and Michael A Kuhn.

Experimental methods: Between-subject and within-

subject design. Journal of Economic Behavior & Organi-

zation, 81(1):1–8, 2012.

[] Alexia Chatzikonstantinou, Christoforos Ntantogian,

Georgios Karopoulos, and Christos Xenakis. Evaluation

of cryptography usage in android applications. In

International Conference on Bio-inspired Information and

Communications Technologies, pages 83–90, 2016.

[] Manuel Egele, David Brumley, Yanick Fratantonio, and

Christopher Kruegel. An empirical study of cryp-

tographic misuse in android applications. In ACM

Conference on Computer and Communications Security,

pages 73–84, 2013.

[] Felix Fischer, Konstantin Böttinger, Huang Xiao, Chris-

tian Stransky, Yasemin Acar, Michael Backes, and Sascha

Fahl. Stack overflow considered harmful? the impact

of copy&paste on android application security. In 2017

IEEE Symposium on Security and Privacy, SP 2017, San

Jose, CA, USA, May 22-26, 2017, pages 121–136, 2017.

[] Lei Gao. Latin squares in experimental design. 2005.

[] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita

Anubhai, Dan Boneh, and Vitaly Shmatikov. The most

dangerous code in the world: Validating SSL certificates

in non-browser software. In Conference on Computer and

Communications Security (CCS), pages 38–49, 2012.

[] Peter Leo Gorski, Luigi Lo Iacono, Dominik Wermke,

Christian Stransky, Sebastian Möller, Yasemin Acar, and

Sascha Fahl. Developers deserve security warnings,

too: On the effect of integrated security advice on

cryptographic API misuse. In Fourteenth Symposium on

Usable Privacy and Security, SOUPS 2018, Baltimore, MD,

USA, August 12-14, 2018., pages 265–281, 2018.

[] Boyuan He, Vaibhav Rastogi, Yinzhi Cao, Yan Chen,

V. N. Venkatakrishnan, Runqing Yang, and Zhenrui

Zhang. Vetting SSL usage in applications with SSLINT.

In IEEE Symposium on Security and Privacy, pages 519–

534, 2015.

[] Natalia Juristo and Ana M Moreno. Basics of software

engineering experimentation. Springer Science & Busi-

ness Media, 2013.

[] Christopher Kane, Bo Lin, Saksham Chand, and Yan-

hong A. Liu. High-level cryptographic abstractions.

CoRR, abs/1810.09065, 2018. URL http://arxiv.org/abs/

1810.09065.

[] Stefan Krüger, Sarah Nadi, Michael Reif, Karim Ali, Mira

Mezini, Eric Bodden, Florian Göpfert, Felix Günther,

Christian Weinert, Daniel Demmler, and Ram Kamath.

Cognicrypt: supporting developers in using cryptog-

raphy. In Proceedings of the 32nd IEEE/ACM Interna-

tional Conference on Automated Software Engineering,

ASE 2017, Urbana, IL, USA, October 30 - November 03,

2017, pages 931–936, 2017.

[] Stefan Krüger, Johannes Späth, Karim Ali, Eric Bodden,

and Mira Mezini. CrySL: An Extensible Approach to

Validating the Correct Usage of Cryptographic APIs.

In European Conference on Object-Oriented Programming

(ECOOP), 2018.

[] Stefan Krüger, Johannes Späth, Karim Ali, Eric Bodden,

and Mira Mezini. CrySL: An Extensible Approach to

Validating the Correct Usage of Cryptographic APIs. In

IEEE Transactions on Software Engineering (TSE), 2019.

[] Stefan Krüger, Karim Ali, and Eric Bodden.

CogniCryptGEN - Generating Code for the Secure

Usage of Crypto APIs. In Internationl Symposium on

Code Generation and Optimization (CGO), 2020.

[] Clayton Lewis. Using the” thinking-aloud” method in

cognitive interface design. IBM TJ Watson Research

Center Yorktown Heights, NY, 1982.

[] Siqi Ma, David Lo, Teng Li, and Robert H. Deng. Cdrep:

Automatic repair of cryptographic misuses in android

applications. In Proceedings of the 11th ACM on Asia

Conference on Computer and Communications Security,

AsiaCCS 2016, Xi’an, China, May 30 - June 3, 2016, pages

711–722, 2016.

[] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bod-

den. Jumping through hoops: why do Java developers

struggle with cryptography APIs? In International

Conference on Software Engineering (ICSE), pages 935–

946, 2016.

[] Alena Naiakshina, Anastasia Danilova, Christian Tiefe-

nau, Marco Herzog, Sergej Dechand, and Matthew

Smith. Why do developers get password storage

wrong?: A qualitative usability study. In Proceedings

of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, CCS 2017, Dallas, TX, USA,

October 30 - November 03, 2017, pages 311–328, 2017.

[] Alena Naiakshina, Anastasia Danilova, Christian Tiefe-

nau, and Matthew Smith. Deception task design in

developer password studies: Exploring a student sample.

In Fourteenth Symposium on Usable Privacy and Security,

SOUPS 2018, Baltimore, MD, USA, August 12-14, 2018.,

pages 297–313, 2018.

[] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz,

Emanuel von Zezschwitz, and Matthew Smith. ”if you

want, i can store the encrypted password.” - a password-

storage field study with freelance developers. 2019.

[] Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, and

Matthew Smith. On Conducting Security Developer

Studies with CS Students: Examining a Password-

Storage Study with CS Students, Freelancers, and Com-

pany Developers. In CHI. ACM, 2020. To appear.

[] Duc-Cuong Nguyen, Dominik Wermke, Yasemin Acar,

Michael Backes, Charles Weir, and Sascha Fahl. A stitch

in time: Supporting android developers in writingsecure

code. In Proceedings of the 2017 ACM SIGSAC Conference

on Computer and Communications Security, CCS 2017,

Dallas, TX, USA, October 30 - November 03, 2017, pages

1065–1077, 2017.

[] Oracle. Java cryptography architecture (JCA),

2017. https://docs.oracle.com/javase/9/security/

java-cryptography-architecture-jca-reference-guide.

htm#GUID-2BCFDD85-D533-4E6C-8CE9-29990DEB0190.

[] Oracle. Java secure socket extension (JSSE),

2017. https://docs.oracle.com/javase/9/security/

java-secure-socket-extension-jsse-reference-guide.htm#

JSSEC-GUID-93DEEE16-0B70-40E5-BBE7-55C3FD432345.

[] Frederick F Reichheld. The one number you need to

grow. Harvard Business Review, 81(12):46–55, 2003.

[] Shuai Shao, Guowei Dong, Tao Guo, Tianchang Yang,

and Chenjie Shi. Modelling analysis and auto-detection

of cryptographic misuse in Android applications. In

nternational Conference on Dependable, Autonomic and

Secure Computing, pages 75–80, 2014.

[] Tyler W. Thomas, Madiha Tabassum, Bill Chu, and

Heather Lipford. Security during application develop-

ment: an application security expert perspective. In

Proceedings of the 2018 CHI Conference on Human Factors

in Computing Systems, CHI 2018, Montreal, QC, Canada,

April 21-26, 2018, page 262, 2018.

[] Qing Wang, Juanru Li, Yuanyuan Zhang, Hui Wang,

Yikun Hu, Bodong Li, and Dawu Gu. Nativespeaker:

Identifying crypto misuses in android native code li-

braries. In Information Security and Cryptology - 13th

International Conference, Inscrypt 2017, Xi’an, China,

November 3-5, 2017, Revised Selected Papers, pages 301–

320, 2017.

[] Eclipse Website. http://www.eclipse.org, 2020.

Appendix

Questionnaire

For each task, the questionnaire includes the following

questions:

Q1/8: This task was difficult.

– Type: Scale 1 (Strongly Disagree) to 5 (Strongly Agree).

Q2/9: This task was fun.

– Type: Scale 1 (Strongly Disagree) to 5 (Strongly Agree).

Q3/10: I think I solved this task correctly.

– Type: Scale 1 (Strongly Disagree) to 5 (Strongly Agree).

Q4/11: I think I solved this task securely.

– Type: Scale 1 (Strongly Disagree) to 5 (Strongly Agree).

Q5/12: Have you written or seen code for tasks similar to this

one before? For example, maybe you worked on a project that

included a similar task, but someone else wrote that portion

code.

– Type: Single-answer question.

– Possible choices: [I have written similar code; I have seen

similar code, but have not written it myself; No, neither; I

don’t know; I prefer not to say.]

Q6/13: Based on the last task, please how likely you would

recommend the coding environment to a fellow programmer.

– Type: Scale 0 to 10.

Q7/14: Please provide additional feedback about what you

found useful or not useful in the coding environment. Please

provide concrete examples when possible.

– Type: Free-text field.

We also provide another questionnaire at the end of

the experiment (i.e., after finishing both tasks) that asks

participants about their programming experience Q15 –Q20,
security expertise Q21 – Q26, general demographics Q27 –

Q31, and more general comments on their experience Q32.
This final questionnaire includes the following questions:

Q15: How many years have you been programming in Java?

– Type: Free-text field.

Q16: How many years have you been coding in general?

– Type: Free-text field.

Q17: How did you learn to code?

– Type: Multiple-answers question.

– Possible choices: [Self-taught, Online class, College, On-

the-job training, coding, other]

Q18: Which coding environment do you primarily use (name

of the IDE or text editor)?

– Type: Free-text field.

Q19: Are you currently using the Eclipse IDE?

– Type: Single-answers question.

– Possible choices: [Yes, No]

Q20: How long have you been using the Eclipse IDE (in

years)?

– Type: Free-text field.

Q21: Do you have an IT-security background?

– Type: Single-answers question.

– Possible choices: [Yes, No, Prefer not to say]

Q22: If you answered yes in the previous question, please

specify.

– Type: Free-text field.

Q23: Which of the following options do describe your expe-

rience with cryptography best?

– Type: Single-answers question.

– Possible choices: [I have never used cryptography during

software devlopment, I invented my own cryptographic

algorithm or protocol, I implemented a cryptographic al-

gorithm or protocol, I occasionally use cryptographic APIs

or libraries during software development, I don’t know,

Prefer not to say]

Q24: Have you taken a computer-security class or course in

the last five years?

– Type: Single-answers question.

– Possible choices: [Yes, No, Prefer not to say]

Q25: If you answerd yes in the previous question, please

specify.

– Type: Free-text field.

Q26: Please tell us your highest degree of education.

– Single-answer question.

– Possible choices: [Less than high school, High school, Some

college, Bachelor’s degree, Master’s degree, Professional

degree, Ph.D., Prefer not to say.]

Q27: Please tell us your gender. (”na” for ”prefer not to say”)

– Type: Free-text field.

Q28: How old are you?

– Type: Free-text field.

Q29: What country to you live in?

– Type: Free-text field.

Q30: What is your native language?

– Type: Free-text field.

Q31: What other languages are you fluent in (if any)?

– Type: Free-text field.

Q32: Please provide any additional feedback for the study

you have.

– Type: Free-text field.

