Securing Your Crypto-API Usage Through Tool
Support - A Usability Study

Stefan Kriiger, Michael Reif
Independent
krueger.stefan.research@gmail.com

Eric Bodden, Yasemin Acar
University of Paderborn
eric.bodden@uni-paderborn.de

Abstract—Developing secure software is essential for pro-
tecting passwords and other sensitive data. Despite the
abundance of cryptographic libraries available to developers,
prior work has shown that developers often unknowingly
misuse the provided Application Programming Interfaces
(APIs), resulting in serious security vulnerabilities. Eclipse
CogniCrypt is an IDE plugin that aims at helping developers
use cryptographic APIs more easily and securely by providing
three main functionalities: (1) it provides a use-case-oriented
view of cryptographic APIs and guides the developer through
their configuration, (2) it generates the code needed to accom-
plish the chosen use case based on the selected choices, and
(3) it continuously analyzes the developer’s code to ensure
that no API misuses are introduced later. However, so far the
effectiveness of CogniCrypt was never empirically evaluated.
In this work, we fill this gap through a controlled experiment
with 24 Java developers. We evaluate the tool’s effectiveness
in reducing API misuses and saving developer time. The
results show that CogniCrypt significantly improves code
security and also speeds up development for cryptography-
related tasks. The feedback received during the study suggests
that developers particularly appreciate CogniCrypt’s code
generation. Its static-analysis is valued for keeping the code
up-to-date. Yet, the further integration of generated code
into a developer’s project still presents a major challenge.
Nonetheless, our results show that CogniCrypt effectively
helps application developers produce more secure code.

Index Terms—component, formatting, style, styling, insert

I. INTRODUCTION

Entrusting sensitive data such as credit-card information or
passwords to digital devices has become the norm. To secure
this data, application developers need to leverage crypto-
graphic algorithms. As a result, a multitude of cryptographic
Application Programming Interfaces (APIs) have been devel-
oped for most of the major programming languages over
the years. These APIs provide functionalities such as digital
signatures, encryption algorithms, and hashing functions that
can provide the required protection. Unfortunately, previous
research has shown that many application developers do not
correctly use these cryptographic APIs, leading to serious
security vulnerabilities [? ? ?] such as leaking passwords or
insecure encryptions.

Anna-Katharina Wickert
Technische Universitit Darmstadt
lastname@st.informatik.tu-darmstadt.de

Mira Mezini
Technische Universitit Darmstadt
mezini@informatik.tu-darmstadt.de

Sarah Nadi, Karim Ali
University of Alberta
nadi, karim.ali@ualberta.ca

Sascha Fahl
CISPA Helmbholtz-Center
for Information Security

sascha.fahl@cispa.de

Previous work investigated why developers struggle with
cryptography APIs and what solutions they deem fit to
solve their problems [?]. The authors concluded that de-
velopers desire higher-level abstractions in terms of tasks.
These abstractions can be in terms of more use-case-based
documentation, use-case-based API design, or tooling that
helps them write better code for these use cases and alerts
them of any problems. Additionally, developers desire sup-
port for selecting the correct cryptographic algorithms and
configurations. In response, ?] proposed CogniCrypt, an
Eclipse-based assistant for cryptogtaphic APIs, that addresses
some of these problems. CogniCrypt is targeted at application
developers who need to use cryptographic APIs but are not
necessarily cryptography experts. In particular, CogniCrypt
aids developers by providing a code generator for several
cryptographic use cases as well as a suite of code analyses
guaranteeing the correct usage of common cryptographic
APIs. ? ? ?] argue that this mix of code generation and
code analysis leads developers to select the right solutions
for their projects as well as make sure the implementation
is correct. However, these claims have not been empirically
investigated, leaving the question whether CogniCrypt may
reduce cryptographic misuse unanswered.

In this paper, we bridge this gap by conducting a controlled
experiment to evaluate the usefulness of such an assistance
tool from the developer’s perspective. Our experiment in-
volves 24 participants from two universities. We employ a
within-subjects design [?] where each participant performs
two tasks, one using CogniCrypt and one using the plain
Eclipse IDE. Our evaluation focuses on answering the fol-
lowing research questions:

RQ1 Does the use of CogniCrypt improve the functional
correctness of cryptography application code? We are
interested to see if participants who use CogniCrypt
end up producing more functional code for a given
task. We measure functionality by manually assessing
participants’ code for functionality based on a func-
tionality scoresheet we developed.

RQ9 Does the use of CogniCrypt improve the security of

cryptography application code? Given the main claims
of CogniCrypt, we are interested to see if participants
who use CogniCrypt do end up producing more secure
code. We measure security in terms of how many
cryptographic API misuses they make.

Does the use of CogniCrypt shorten the time taken to
write cryptography application code? Given its task-
based nature, CogniCrypt is supposed to save the time
needed to research and understand the various details
of cryptography APIs. We are interested to see if this
indeed holds. Do participants using CogniCrypt end up
finishing the cryptography tasks faster?

Do developers perceive CogniCrypt to be more usable
than plain Eclipse? Since the usability of any tool
impacts its long-term adoption, we are also interested
to evaluate participants’ perception of CogniCrypt. We
measure usability through the Net Promoter Score
(NPS) [?] and direct written feedback by participants.
What obstacles do developers still face with CogniCrypt?
When users face roadblocks while using a tool, they
might stop using it, even if they consider it otherwise
usable. From written feedback, we therefore also derive
obstacles participants report.

RQs

RQ4

RQs

Our results show that there is a statistically significant
improvement in functionality and security scores as well
as completion times for participants using CogniCrypt over
regular Eclipse. Moreover, the majority of participants using
Eclipse could not finish the given tasks in the allotted
time, while more than 80% of participants using CogniCrypt
finished their given task. Overall, the results provide strong
evidence that CogniCrypt can indeed help developers write
more secure code faster.

II. CoGNICRYPT

CogniCrypt [? ?] is an assistance tool for cryptographic
APIs. It has been integrated with the widely used integrated
development environment (IDE) Eclipse [?]. Its main features
are a code generator COGNICRYPTy and a static analysis
CoGNICRYPTs,s;. We only give a brief description of the
tool and refer to the tool paper by ?] for a more detailed
discussion of features and supported use cases.

The code generator COGNICRYPT gy Supports four common
use cases of cryptography as the screenshot in Figure 1
shows. These include data encryption and establishing a TLS
communication channel. The CogniCrypt code generator uses
a wizard to guide the developer through the configuration
process of the generated code. First, a user can select the
use case they wish to perform from the four pre-defined use
cases. For COGNICRYPTgy to configure the correct solution,
it may ask the user several questions (e.g., data type of plain
text or whether the server or client side is implemented). The
questions are intended to require little cryptography knowl-
edge, yet still allow COGNICRYPT sy to tailor the solution
to the user’s use case. As a last step before COGNICRYPT gy
generates the code into the user’s project, they have to
select a file. This file is used by CoGNICRYPT.sy to place

& CogniCrypt . O X

Task Selection
Select the cryptography task that you like to perform. (

&
[y

|
J

When this use case is selected, CogniCrypt generates code for encrypting data. You can
select which kind of plaintext (String, File, Byte[]), you wish to encrypt, as well as how to
communicate the secret necessary for decryption.

3

Generate Cancel

< Back Next »

Fig. 1: CogniCrypt’s selection screen.

a new method that showcases how to make use of the
actual implementation of the use case. This method simplifies
the integration of COGNICRYPTssy's code into the remain-
der of the user’s project. The actual implementation code
comprises wrapper code around existing widely used Java
cryptographic APIs (e.g., Java Cryptography Architecture [?
], Java Secure Socket Extension [?]) a developer may use
to implement these use cases themselves. COGNICRYPT py
generates this code into separate classes into the package
"cognicrypt.crypto’. To support this process further and also
the evolution, modification, and refactoring of the generated
code by the user, CogniCrypt also comprises a static misuse
detector COGNICRYPT;,5r. By default, COGNICRYPTg,sr is ap-
plied every time the user saves a source file. However, they
may also disable automated execution and trigger it through
a button in the toolbar or via the project context menu of the
package explorer. For all cases, CogniCrypt shows misuses as
regular Eclipse warnings. In a CogniCrypt preference menu,
the user can also select the severity of warnings based on
the type of misuse.

In the backend, both COGNICRYPT;y and COGNICRYPT,g;
make use of the specification language CrYSL [?]. When
bootstrapped with a set of CRYSL rules, COGNICRYPT,,s; the
developer’s code on the fly in Eclipse for its compliance with
the constraints on parameter values, forbidden methods, and
usage patterns defined in them. COGNICRYPT sy, On the other
hand, uses use-case-specific Java code templates with gaps
where code using Crypto APIs in a full implementation of
the respective use case would be. To generate the full im-
plementation, COGNICRYPT sy applies the appropriate CrRYSL
rules to the right template to fill the gaps [?].

TABLE I: Study Tasks for Participants

Name Goal Program Stub Test Cases
write of ciphertext-file was successful
FE Encrvot a file Reads file and ciphertext-text file existence
P writes it back to disk ciphertext file is not empty
ciphertext file is not same as plaintext-file
TLS Send specific message to Message that should correct message

a server via TLS connection

be sent is defined

incorrect message (4x)

III. EXPERIMENTAL DESIGN

We next describe the controlled experiment we designed
to address this study’s goal.

A. Object of the Experiment and Methodology

To measure CogniCrypt’s effectiveness and answer our five
research questions, we compare the cryptography code soft-
ware developers write with and without CogniCrypt. To this
end, we designed the experiment such that each participant
is asked to implement two programming tasks that involve
cryptography. For one of them, they are allowed to use
CogniCrypt, for the other one they use a regular Eclipse. We
compare against a regular Eclipse to most closely resemble
an everyday working environment of application developers.
In the following, we will refer to the environments as “CC”
(for CogniCrypt) and “EC” (for EClipse).

We follow a within-subjects design to ensure that we
can observe the effect of CogniCrypt per participant and
avoid possible biases or population differences caused by the
distribution of participants among two separate groups [?]. A
within-subjects design allows us to run the experiment with a
smaller number of participants than would have been needed
for a between-subjects design. It is also resilient towards
variability in individual skill level since it compares scores of
one participant in one condition with the scores of the same
participant in a different condition. This design further pro-
vides a better chance of observing any statistical differences
between the two tested environments EC and CC. To avoid
learning/practice effects as well as fatigue effects that might
influence the solutions, we follow a Latin square design [?
] where the order of the tasks and environments presented
to the participants is assigned in a way such that each task
appears in each sequential position an equal number of times.
In other words, an equal number of participants receive each
possible ordering of tasks and environments.

Before each task, we ask participants to read through a
tutorial consisting of a handful of lines of text and some
screenshots on the environment they would be using in the
next task. The experiment instructor asks them to make
use of the features mentioned and explained in the tuto-
rial as much as possible while working on the task. We
have, however, avoided providing any particular in-depth
documentation on CoGNICRYPTzy and COGNICRYPT,s,. This
decision—if anything—puts CogniCrypt at a disadvantage
as participants are more likely to be familiar with regular
Eclipse than with CogniCrypt and every tool comes with a

learning curve. However, we did not want to unnecessarily
bias participants since we believe that the more documenta-
tion we were to provide, the clearer it would be which of the
two tools was the one we were evaluating. Such bias would
severely limit the value of the feedback participants give us
on CogniCrypt’s feedback in the survey.

While solving the tasks, participants are allowed to use
any online resources they want to, apart from email and chat
applications. We also prime participants by enhancing task
descriptions with requests to participants to pay extra atten-
tion to security while implementing the task. The rationale
is that previous research strongly suggests that developers,
in the context of user studies, do not bother with security
concerns unless explicitly requested [?].

We design the two tasks shown in Table I. For the tasks,
we implemented two small Java program stubs (involving
1-3 classes) that participants had to modify during the
experiment. For each task, participants need to add certain
security functionality to the existing program stub. Task FE
requires the participant to implement a secure file encryption
using a password. The program stub we provided reads the
file into a string and then stores that string into a file again.
In task TLS, we expect participants to implement a TLS client
whose server runs locally on their machine at port 9999. For
this task, the stub defines the message that should be sent.
It also contains a key-store file that stores the certificate the
TLS connections must use when connecting to the server.
The task description pointed participants to this file.

With each stub, we provide several unit tests, each cov-
ering one requirement for functional correctness. The task
descriptions explain that a task is completed once all unit
tests pass. They also point participants to the exact method
stubs to implement, such that they can run the unit test
before submitting their code. We have further enhanced the
program stubs with todo-comments at the program locations
that require participants’ extensions.

When participants use a bare Eclipse, they are required
to write code that implements the task according to se-
curity and functionality criteria we define below and in-
tegrate that code into the stub. When participants may
use CogniCrypt, the tool can generate code that imple-
ments the criteria for them. Here, the challenge is no
longer about interacting with Crypto APIs directly and
instead becomes about selecting the right task in CocNi-
CRYPT.py, answering its configuration questions correctly
and integrating the templateUsage () into the provided

TABLE II: Functionality and Security Criteria for Study Tasks

Name Functionality Security
Writing of ciphertext file was successful (test) . . .
. . Using secure encryption configuration
Ciphertext file existence (test) . R
. . Using secure key deriviation
Ciphertext file is not empty (test) .
. . . Password has never been a String
FE Ciphertext file is not equal to plaintext file (test) . . . -
- Using secure hashing algorithm for key derivation
Password used for key generation
. . . Random salt of at least 16 byte
Using some kind of encryption Secure preparation of encryption
Encrypting the whole plaintext prep yP
Correct message (test)
4x Incorrect Message (test) Using TLS
TLS Using provided parameters Using secure SSL socket factory provider

Setting correct key store
Flushing of write channel
Closing Connection

Using secure cipher suites
Using secure tls protocols

stub. There are several correct configurations of CogniCrypt
for both tasks and, consequently, multiple different correct
templateUsage() for both tasks, too. If configured
correctly, the templateUsage (), as shown in Figure 2,
for task FE would take a password and String plain text and
contain three three method calls that subsequently generate
a key from the password, encrypt the plaintext using the
key, and decrypt the resulting ciphertext with the same
key. In case of the TLS task, one possible correct method
templateUsage () is shown in Figure 3. The method
takes the host and port and first instantiates an object of
another generated class, which handles TLS connections.
Subsequently, it calls three methods on this object, one
to send data, one to receive data and one to close the
connection.

public static boolean templateUsage(String plainText, char[]
encryptionPassword) throws GeneralSecurityException {

SecureEncryptor encryptor = new SecureEncryptor();
SecretKey key = encryptor.generateKey(encryptionPassword) ;

String ciphertext = encryptor.encrypt(plaintext, key);
encrypt.decrypt(ciphertext, key);

Fig. 2: TemplateUsage Method for ENC task

public static void templateUsage(String host, int port) {
//You need to set the right host (first parameter) and the
port name (second parameter). If you wish to pass an IP
address, please use overload with InetAdress as second
parameter instead of string.

TLSClient tls = new TLSClient(host, port);
boolean sendingSuccessful = tls.sendData(""); // This call
sends the passed message over the connection.

String data = tls.receiveData(); //This call makes the
socket listen for incoming messages.

tls.closeConnection(); // This call properly closes the
connection. Do not forget it.

Fig. 3: TemplateUsage Method for TLS task

The two environments reflect realistic development set-
tings that, as pointed out above, each come with their own
challenges. When developers may not use CogniCrypt, they
have to gather the domain and API-usage knowledge for
Crypto API themselves. When they may use the tool, they
still need to use it correctly and integrate the generated code
properly. Switching the order of environments additionally
avoids learning effects. Consequently, we believe both the
environments as well as the measurements described below
evaluate CogniCrypt’s effectiveness fairly and appropriately.

In summary, this study design leaves us with four different
conditions. Condition 1 has the participant start with task FE
using the regular Eclipse and then go on to implementing
task TLS with CogniCrypt (FE/EC—TLS/CC). In condition
2, the order is swapped (TLS/CC—FE/EC). For condition
3, a participant first works on task TLS in regular Eclipse
and subsequently continues with task FE in CogniCrypt
(TLS/EC—FE/CC). Condition 4 once again switches the order
of configurations from condition 3 (FE/CC—TLS/EC).

B. Participants and Experiment Context

We recruited 32 graduate students at two universities
to participate in the experiment. All students were either
currently taking a course including Java development tasks

or had completed such a course already, e.g., a course for
which they had implemented several static program analyses
in Java. We considered this experience sufficient in terms of
Java programming skills. We did not filter based on students’
knowledge of Eclipse. During our recruitment, we did not
mention cryptography to not bias our sample set towards
students who feel more comfortable with cryptography. Par-
ticipation in the study was voluntary and not required as
part of a course.

C. Collected Measurements

To answer R(); and RQ)2, we have compiled a score
sheet of requirements that the implementation of each task
needs to exhibit in order to count as functionally correct
or secure, respectively. Table II shows the criteria for both
tasks. The test cases that we enhanced each stub with also
covered requirements for functional correctness that we were
able to cover through a unit test case. In Table II we mark
the requirements that correspond to a test case in a stub
by ‘(test)’. We measure correctness and security of each
participant by first running the test cases on their code and
subsequently manually checking the compliance with the
remaining functionality as well as the security criteria. The
percentage of items covered are the functionality and security
score of each task, respectively.

For an implementation of the FE task to be considered
correct, a ciphertext file must exist that is different from the
plaintext file, but not empty. The password provided through
the stub must also be used to generate a cryptographic
key. Finally, some form of encryption must be used—even
if it is a self-implemented one—that encrypts the whole
plaintext. Security-wise, the encryption configuration must
be secure. That is, no insecure algorithms (e.g., DES) or block
modes (e.g., ECB) must be used. The key must be derived
securely from the password. That requires (1) the password
to be used, (2) the key derivation to be conducted through
PBEKeySpec, and (3) the PBEKeySpec to be used se-
curely. In addition, the encryption must be prepared securely.
That is, depending on the cipher mode the participant uses,
they may need to provide an Initialization Vector (IV).

To implement task TLS correctly, the client must be able
to send a message and receive the server’s answer. When
it sends the correct message, it should also handle the
appropriate response from the server. The client must use
the correct IP and port, set the correct key store, flush the
write channel, and close the connection at the end. From
a security perspective, we require the implementation to
actually use TLS. The TLS connection must also be set up
using an appropriate socket, e.g., through the Java Secure
Socket Extension (JSSE). Lastly, the TLS connection must be
configured to use secure cipher suites and only enable secure
TLS protocols. A default configuration of a TLS connection
set up through the JSSE allows both insecure cipher suites
and TLS protocols. Participants therefore have to configure
these themselves. Participants who cannot use CogniCrypt
thus have to not only discover on their own that the default

configuration is insecure, they also have to find out how to
enable secure cipher suites and TLS protocols only.

To answer R()3, we also measure the time participants
take to complete the task. We consider completion time as
the time from when a participant starts to read the task
description until they close the development environment.
We intentionally include any time spent outside the IDE
looking at online resources as we believe this is part of the
time taken to complete the task. In other words, we do not
pause the timer if the IDE loses focus.

D. Survey Questionnaire

To answer R()4 and R()5, we want to understand the steps
developers take to solve a task. However, to ensure a natural
work setting and to avoid inaccuracies in measuring com-
pletion time, we do not follow a “think aloud” approach [?
]. Instead, we ask participants to fill out questionnaires after
each task. In these questionnaires, we ask about the perceived
difficulty of the task, the clarity of the task description, and
their experience with the environment. The questions are
available in Appendix A. We used Google Forms to create
all three questionnaires.

E. Pre-Testing

We first conducted a pilot study with five test participants.
For the purpose of the pilot study, we followed the same
study design as described above, apart from one aspect:
from participants of the pilot study we aimed at receiving
feedback to refine our study design if necessary and were
not attempting to take exact time measures. As a result, for
the pilot study we did follow the “think aloud” approach to
gather direct feedback from our pilot-study participants.

Participants informed us of ambiguities in the task de-
scriptions and confusing oddities in some Ul elements of
CogniCrypt. For the final study, we revised the formulations
in questions and re-designed the respective Ul elements. All
the pilot study participants finished both tasks, including
questionnaires, within 45 to 60 minutes. In the final exper-
iment, we hence told participants to finish within an hour.
After half the time, we reminded them to move on to the
second task if they had not already. From the results we
report in this work, none have been gained from the pilot
study.

IV. RESULTS

From originally 32 participants, we had to exclude the re-
sults of eight because they neither executed COGNICRYPT gy
nor CoGNICRYPTg,s; throughout the whole study. We had not
anticipated this scenario and had not set up any telemetry or
questions in the evaluation survey. Thus, we have no further
insights on why these eight participants refrained from using
CogniCrypt. For the remaining 24 (P01 — P24) we show the
participant distribution among the conditions in Table III. We
manually analyzed the participants’ code and their survey
answers only for the remaining 24 participants. The manual
analysis was conducted by the first and the second author.

TABLE III: Conditions & Participants

Condition Particpants
EC/FE — CC/TLS 7
CC/TLS — EC/FE 4
EC/TLS — CC/FE 7
CC/FE — EC/TLS 6

The agreement ratio for functionality and security score
are 92% and 90%, respectively. For all differences in rating,
the two raters negotiated until they reached a compromise.
Table IV provides a complete overview of all results of the
24 participants.

A. Functionality (RQ1)

For each solution, we first investigate whether it actually
implemented the task completely. To this end, we first run
the test cases. In the following, we will distinguish between
running and broken solutions. For us to consider a solution
running, all the provided unit test cases must terminate with-
out exception, even if they fail. We consider a solution broken,
on the other hand, when at least one of its test cases throws
an exception. We make this distinction because non-running
programs are distinctly non-functional in comparison to a
program that does not implement all functionality, but at
least terminates. To appropriately account for this, we award
all non-running programs zero functionality points regardless
of the state of their implementation and discard them from
the remainder of this discussion.

Our results indicate that there is a noticeable difference
between the running/broken ratios of solutions that have
been implemented using CogniCrypt and those without.
Without CogniCrypt, participants only produced running
code for the FE task in six out of eleven cases. For task
TLS, only two participants managed to get the test cases
working. Two further participants succeeded at establishing
a connection, but failed at sending data, causing the test cases
to hang. Everyone else but two participants did not manage
to establish a connection to begin with. In contrast, with
CogniCrypt, participants produced running code for all but
one case for both task FE (twelve out of thirteen) and task
TLS (ten out of eleven).

Participant P07 who did not manage to complete task
FE with CogniCrypt did use COGNICRYPTqy and had it
generate the method templateUsage () into the correct
class. However, they then ignored the generated code and
attempted to implement a custom solution that throws an
exception when the test cases are run. Participant P15 failed
to implement task TLS for a similar reason. They also used
CoGNICRYPTy to generate code, but for the encryption use
case. They subsequently tried to manually set up the TLS
connection and used the generated templateUsage ()
only to encrypt the message. As their code does not compile,
the test cases cannot be executed.

As mentioned above, we will limit the following discussion
to solutions that can be run. Figure 4 shows the functionality

scores across all four combinations of environment/program-
ming task. The score is shown in percentages, that is, a score
of 2 out 4 is shown as 0.50. In our following discussion, when
we justify scores, we refer to individual points instead of the
percentages.

a) FE: For task FE, three of the six participants who
completed the task without CogniCrypt achieve a full func-
tionality score, resulting in a mean functional score of 1.
We deducted one point from the other three solutions be-
cause they all failed to derive the encryption key from the
password. From the twelve participants who implemented
task FE successfully with CogniCrypt, eight did so with a
full functionality score. Participant P23 generated code for
the wrong use case ("Secure Password Storage”) and then
attempted to use it in a custom-made encryption. The remain-
ing three participants did manage to run COGNICRYPT gy, but
then failed to integrate the generated code in one way or
another. P02 completed the implementation of the encryption,
but did not manage to store the result of the encryption in
the variable the stub writes into the ciphertext file. Hence, the
ciphertext file has the same content as the plaintext, although
the encryption itself was implemented in a functionally
correct manner. P01 ignored the generated code. They even
went so far as to delete the method templateUsage ()
from the Java file they coded in, but left the other gener-
ated code untouched. Instead, they implemented a custom
solution that they did not manage to finish. Lastly, P09
only made use of the key-generation code and attempted to
implement a custom encryption solution for the data using
CipherOutputStream. However, this solution does not
encrypt the whole plaintext.

b) TLS: For task TLS, the results are much clearer than
for task FE. First, as mentioned above, only two participants
who did not use CogniCrypt for the task, did actually produce
running code. Those two received two (P23) and three (P21)
out of nine points on the functionality score, respectively. In
neither submission do any of the test cases pass nor do they
set the correct keystore. P23, in addition, fails to flush the
channel to the server. In contrast to that, all ten participants
who implemented task TLS using CogniCrypt received full
points on the functionality score. They all generated code
using CoGNICRYPT.zy and integrated it properly into the
program stub.

¢) Summary: In conclusion, for the eight participants
who implemented task FE with CogniCrypt and received
full points on the functionality score, CogniCrypt worked
as intended. Some participants did, however, face problems.
In one case, the participant was not clear about which use
case they need to pick. For the remaining three, CogniCrypt
failed at properly communicating that and how they need
to integrate the generated code into their own application
code. On the other hand, all but two participants attempting
to implement task TLS without CogniCrypt failed to so, while
all but one who did use CogniCrypt succeeded. For both
tasks, we found participants achieved statistically significant
better scores using a Wilcoxon signed-rank test for paired

TABLE IV: Participants Overview

Participant Condition Score Task 1 Score Task 2
Task 1 Task 2 CogniCrypt Functionality = Security = CogniCrypt Functionality Security

Po1 TLS FE O 0/9 0/4 {] 4/7 0/6
P02 FE TLS [5/7 5/6 O 0/9 0/4
P03 FE TLS O 6/7 1/6 (] 9/9 2/4
P04 TLS FE O 0/9 0/4 [] 717 6/6
P05 FE TLS (] 7/7 6/6 O 0/9 0/4
Po6 EE TLS O 6/7 1/6 [] 9/9 4/4
P07 TLS FE O 0/9 0/4 [] 0/7 0/6
P08 FE TLS @) 717 6/6 [] 9/9 4/4
P09 TLS FE O 0/9 0/4 [] 6/7 6/6
P10 FE TLS O 0/7 0/6 [] 9/9 4/4
P11 TLS FE [] 9/9 4/4 @) 0/7 0/6
P12 EE TLS ([717 6/6 O 0/9 0/4
P13 FE TLS o 7/7 6/6 @) 0/9 0/4
P14 FE TLS O 717 1/6 ([J 9/9 4/4
P15 TLS FE [J 0/9 0/4 O 0/7 0/6
P16 TLS FE O 0/9 0/4 [] 717 5/6
P17 TLS FE [9/9 4/4 @) 6/7 1/6
P18 TLS FE [] 9/9 4/4 @) 0/7 0/6
P19 FE TLS O 7/7 4/6 (] 9/9 4/4
P20 TLS FE O 0/9 0/4 () 717 6/6
P21 FE TLS [7/7 6/6 @) 3/9 2/4
P22 FE TLS @) 0/7 0/6 ([) 9/9 4/4
P23 TLS FE O 2/9 2/4 ® 717 6/6
P24 FE TLS [4/7 1/6 @) 0/9 0/4

@ indicates that the task was performed with CogniCrypt and O without, respectively.

E CogniCrypt E Eclipse
1.00

o
5

Functional Score
E <

a
N
&

==

FE TLS
Task

Fig. 4: Functionality Score

data (p < 0.05).

Further, we used the Wilcoxon signed-rank test to check
for correlations of functionality score and self-reported ex-
perience in programming (Q15-Q17), Eclipse (Q18-Q20),
security or cryptography (Q21-Q25) or general demographics
(Q26-Q32), but were not able to find any. Similarly, we have
not found any correlations between functionality score and
order of task or tool.

B. Security (RQ2)

We observe similar trends for the security score. We show
the distribution over the four environment/task combinations
in the box plot in Figure 5.

a) FE: For task FE, similar to the functional score,
we find again somewhat ambiguous results, although much
less so than for the functional score. Only one of the six
participants who implemented task FE without CogniCrypt

achieved a full security score. Participant P19 achieved four
out of six security points, only lacking a random salt, and
choosing an insecure iteration count. The remaining four
participants all received one out of six points. From the
twelve participants who did use CogniCrypt, eight received a
perfect score. We removed one point each for participants P02
and P16 because they transformed the password from a char
array into a String. Neither of the two ended up using the
String password variable, making it effectively dead code and
likely to be optimized away by the Java compiler. We also
assume this code would have been cleaned up in any real-
world setting, but decided to remove the point nonetheless
because the code as-is is insecure. P01 and P23’s custom
solutions, which we already discussed above, do not hold
any security guarantees. While, for instance, P01 generates
a cryptographic key from the password (which is why they
get a point on the functional score for this requirement),
they do so using a number of String, hashing, and array-
copy operations. The code also transforms the password into
a String. In total, POI’s solution receives zero points.

b) TLS: Participants who implemented task TLS with
CogniCrypt all received a perfect security score. This is
because the code generated through CogniCrypt only enables
secure cipher suites and TLS protocols. The two participants
who implemented at least a running program for task TLS
without CogniCrypt achieved zero (P023) and two points
(P021), respectively. We removed two points for participant
P021 because they neglected to configure the connection in
terms of cipher suites and TLS protocols.

We also checked the security of the broken solutions for
task TLS developed without CogniCrypt to provide at least
some kind of evaluation. None of the ten participants would

E CogniCrypt E Eclipse

h E

o
3
a

Security Score
o

Q
N
]

0.00 . |

FE TLS
Task

Fig. 5: Security Score.

receive more than two points because they display the same
problem as P2I's solution. For the reasons we explained
above, we do not include this data into the box plot, however.
¢) Summary: In summary, participants fare better in
terms of security for both tasks when using CogniCrypt,
compared to when they try it without. As with the function-
ality score, we were able to show a statistically significant
improvement with CogniCrypt, through a Wilcoxon signed-
rank test for paired data (p < 0.05). For participants using
CogniCrypt, the only points detracted were for failing to
clean up the code and for complete custom-made solutions.
We have again checked for correlations with any of the
forms of experience we surveyed participants about in the
questionnaire as well as the order of tasks and tools using a
Wilcoxon signed-rank test, but could not find any.

C. Completion Time (RQ3)

We report the distribution of completion times in Figure 6.
As with functional and security score, we only report com-
pletion times for non-broken solutions. We first note that
completion times for participants using CogniCrypt spread
comparatively widely. For task TLS, P18 finished in six
minutes and thirty-two seconds, whereas it took P11 about
39 minutes and 30 seconds. The fastest successful participant
for task FE completed their work in not even two minutes. In
stark contrast, the participant who took the longest needed
about 42 minutes. We attribute this wide range to two
behaviours we observed while conducting the study when
walking around the room and watching participants over
the shoulder. Many participants, when they had CogniCrypt
available, first attempted to finish the task without using
either COGNICRYPT gy Or COGNICRYPTg,sr. Most eventually
gave up, resorting to either launching COGNICRYPT szy’S Wiz-
ard or triggering COGNICRYPTs,sr. Second, some participants
took longer than others to generate code for the correct
solution using CogniCrypt. Some appeared to struggle when
having to answer questions in COGNICRYPTgy's wizard.
Others even generated code for an incorrect use case at first.

a) FE: When comparing the two plots for completion
time with task FE directly, participants are slightly faster with
CogniCrypt, although there is no statistical significance using

EI CogniCrypt EI Eclipse

2500 °

2000

!
1500

Completion Time (sec)

,_.
o
S}
3

a
<}
3

FE TLS
Task

Fig. 6: Completion Time.

one-sided paired Wilcoxon test. The slowest participant with
CogniCrypt is slower by several minutes than the slowest
participant without CogniCrypt. The diagram presents a
somewhat skewed picture, however, because more partici-
pants managed to finish when using CogniCrypt compared
to when not using it (twelve of thirteen vs. six out of eleven).
We find it likely that participants who took longer with
CogniCrypt would not have finished if they had not had it
at their disposal.

b) TLS: For task TLS, the median completion time
lies at around fourteen minutes when using CogniCrypt.
The two participants who finished TLS without CogniCrypt
completed their work faster. However, as both the functional
and security scores of the two indicate, their solutions are
far from being actually complete and secure. On top of that,
we also argue again that many participants who took longer
with CogniCrypt would not have produced running code
without it. The high number of participants who did not
produce running code without CogniCrypt serves as a strong
indicator for this claim. Given these two observations, we
conclude that CogniCrypt improves the completion time for
this task.

¢) Summary: We conclude that participants are gen-
erally faster with CogniCrypt. We come to this conclusion
because of (a) the higher completion rates in a setting with
limited time available and (b) the lower median completion
times for the solutions that were completed. Where Cogni-
Crypt seems to be slower than regular Eclipse, we argue the
slower speed to be more indicative of more people being
enabled to finish a task to begin with.

D. Usability (RQ4)

Participants generally expressed positive views on Cogni-
Crypt’s usability, but provided criticism relating to the in-
tegration with Eclipse of both CoGNICRYPT;sy and COGNI-
CRYPTgusr. In contrast, regular Eclipse overall received sub-
stantially worse reviews by participants. These results are
reflected in the both tools’ NPS values. NPS generally mea-
sures user satisfaction and ranges from -100 to 100, whereas

any value above 50 is considered excellent and values below
0 are considered bad [?]. CogniCrypt receives an NPS value
of 33.33, a result that is generally considered good, but not
excellent [?]. Regular Eclipse, on the other hand, receives an
NPS of -54.17.

When asked for more concrete feedback (Q7/Q14), par-
ticipants especially praised COGNICRYPTy (P02 — P07, P09,
P11, P12, P16, P19, P21). P02 notes that they ‘have never
worked on encryption before in Java." However, they would
‘strongly say that [CogniCrypt | will be very helpful with
prior knowledge [of the tool]." P05 adds they found Cocni-
CRYPT.py useful and that it was ‘easy to choose input and
generate the encryption function by the tool. It was very
user-friendly for developer since there was no further need to
read about the encryption function and security/authenticity
of that encryption library’. Both aspects highlighted by P05—
the high effectiveness for developers with low experience
and that CogniCrypt lifts a burden off a developer because
it takes care of security features—are also shared by other
participants. P19, for instance, finds COGNICRYPTyyy ‘very
helpful® because they could ‘assumel...] that [the] generated
code [was] secure, which saved a lot of time searching for
documentation on security requirements’. P16 also highlights
the usefulness for cryptography novices: ‘Since I have never
worked on anything similar before, the code generator ([for task
TLS]) was very helpful for me to get an idea about what I
have to do. It was easy to use, since every single configuration
was asked. P12 agrees as they ‘haven’t worked that much
with encryption so far, which is why the code generation was
especially helpful.* P04 highlights the effort that is saved
through CoGNICRYPT gy, because they do not ‘have to search
the web for the right and required classes to get the job
done." P03 goes so far as considering code generators like
COGNICRYPT sy necessary for ‘secure software engineering’,
because ‘we can be sure our code is almost secure.’

P06 appreciates COGNICRYPTs,5r as helpful because it de-
tected their use of an inappropriate block cipher mode for
the call Cipher.getInstance(‘AES‘). P13 tested
CoGNICRYPTs,sr by purposefully introducing misuses to the
code and enjoyed that it found them. P23 praised CogniCrypt
to be “well integrated’ and P20 found it generally ‘easier to
use'.

a) Summary: CogniCrypt has fared significantly better
than Eclipse. Participants generally praise the ease of use and
the help they receive, in particular from CoGNICRYPT 4. Fur-
thermore, CogniCrypt’s NPS result not only trumps Eclipse’s
NPS value by a large margin, but is considered good. How-
ever, it also shows that the tool still comes with limitations,
which we further discuss in the next section.

E. Obstacles (RQs)

One obstacle several participants clearly faced was the in-
tegration of generated code into their project. This obstacle is,
on the one hand, demonstrated by the three participants we
described above who had CoGNICRYPT sy generate code for
task FE, but then failed to properly call that code. However,

participants have also mentioned CogniCrypt’s shortcomings
in that respect in their feedback. P21 comments that ‘it
was difficult to find where the autmomatic generated code
is located’. P01 requests the ‘comments should be improved
for auto-generated code’, because it took them ‘a while to
understand what the generated code says and to identify
which part of the code is generated when [they] already have
[their] own code in the class. So there should be clear way
to separate automatic generated code from [their] own code.’
P08 encountered the same problem as they needed time
to understand which classes COGNICRYPT.y had generated
for them to implement task TLS. When implementing task
FE, P13 struggled to identify, if the generated code would
already derive the key from the password or if they had
to implement that themselves. In the end, they did not
implement it themselves, because the tests passed.

One further problem with CoGNICRYPTpy in particular
appears to be the usability of its wizard. As we noted above,
several participants had to go through multiple attempts of
generating code. The issue is also highlighted by P22 who
criticises that they at first ‘didn’t notice the first screen of
the wizard provided a choice, [they instead] mistook it for an
introductory page and just clicked ’continue’[, and were] then
confused that the code generated didn’t suit my needs".

The warning messages by COGNICRYPT,s; provided an-
other major obstacle participants reported on. P13 rightly
complains that it ‘“was confusing [...] that the autogenerated
code throws errors (in [COGNICRYPTsasr]), which on further
inspection are only in the decryption case and not applicable.’
P02 ran into the same issue when they were ‘getting a[n] error
at [the encryption] method at line number 67. Which I could not
understand that what is exactly the problem.” The warnings the
two participants report of relate to long-known false positives
in COGNICRYPT,s; that have been addressed since conducting
the study. P07 raises a further issue with COGNICRYPTyys;’s
reporting: ‘But when we are using functions with more than
two arguments [COGNICRYPTs sy only says] the parameter is
not properly generated, additionally it should also return info
about how to correct it or some possible description for the
developer to enhance the code’. The warnings, both P02 and P07
refer to, COGNICRYPT;,5; displays for predicate violations. The
developers of CogniCrypt have indeed been struggling to find
a good wording for these kinds of violations and have been
editing COGNICRYPT,,5r Warning messages for such misuses
upon feedback by users several times since COGNICRYPTys;’S
original publication [?]. This comment shows there is still
work to be done regarding this matter.

Lastly, P01 criticises that COoGNICRYPTg; and COGNI-
CRYPT,sr ‘lack documentations, tooltips which detail the op-
tions they provide.” This point is valid for the study, its appli-
cability in practice, however, may be limited. As mentioned
before, we intentionally kept the documentation limited to
not unnecessarily bias participants. In real-world contexts,
users would have the documentation available on Cogni-

Crypt’s website!, which provides extensive introductions to
all its components.

a) Summary: We conclude that while CogniCrypt has
generally received favourable feedback, it still exhibits severe
usability shortcomings. Some participants have struggled
with integrating the code generated by COGNICRYPT gy, but
even more face problems understanding and interpreting
error messages by COGNICRYPTgsr-

V. DiscussiON

Participants in our controlled experiment were signifi-
cantly faster in implementing application code that requires
using cryptography concepts. The code they produced was
significantly more functional and secure than when only
using Eclipse. Participants generally judge CogniCrypt to be
a useful and usable tool as demonstrated by its NPS score.
Our results therefore allow us to conclude for RQ; to RQ3
that CogniCrypt has a significant positive impact on all three.
In addition, we can answer R(Q)4 such that developers do
indeed seem to view CogniCrypt as more usable than plain
Eclipse. Our study, in conclusion, provides strong evidence
that CogniCrypt is effective at combatting cryptographic
misuse.

However, there is still room for improvement. In response
to R(Qs, we can report two main findings. First, when
it comes to integrating code by COGNICRYPT.y into their
application, a large subset of participants struggled because
they had trouble understanding what is happening in their
IDE when COGNICRYPTpy generated code. To help with the
situation, COGNICRYPT;y should inform users better. COGNI-
CRYPTgy should enhance method templateUsage()
with a comment describing which pieces of code have been
generated, what their purposes are, and where they each
can be found. A second issue raised by participants revolves
around the error messages produced by COGNICRYPTgysr,
in particular error messages on predicate-related misuses.
Participants find the warning messages too abstract and that
they expect too much knowledge of CRYSL for the average
developer. They also criticise that they are not actionable, that
is, they do not provide help as to how to resolve them. One
possible avenue of future work might explore more focused
usability testing for COGNICRYPTs,sr’S error messages to A/B
test alternative phrasings. One might even stop showing
transitive predicate warnings entirely.

VI. THREATS TO VALIDITY

Our sample set poses an internal threat to the experiment’s
validity because it consisted of only 32 graduate students
from two universities. That sample set is likely not represen-
tative of the whole Java developer community. However, we
argue that students are more likely to be less experienced in
programming, especially programming in a specific language,
than the average developer. We further assume grad students
are only, if at all, slightly unrepresentative in terms of

!www.cognicrypt.org

security knowledge. If CogniCrypt manages to support the
demographic of students effectively, we expect it to fare even
better with professional developers as they will likely have
more experience with IDE-integrated code generators and
program analysers. Recent work by Naiakshina et al. [?]
supports this assumption empirically.

Our experiment further exhibits an ecological threat as
well. Although we tried to come up with seemingly realistic
tasks, both the task descriptions and the stubs are fairly
unlikely to be found in practice in exactly this manner.
The former rather resemble assignments in a programming
course, the latter are comparatively tiny. It is further ques-
tionable as to how far the regular-Eclipse condition can be
claimed to simulate an authentic environment for everyday
development. Developers often configure their editor and
IDEs to their liking. They also use a wide range of editors
and IDEs to develop in Java and some participants had
no experience in Eclipse. To mitigate this threat, we asked
the participants for their experience level with Eclipse and
found no statistically significant correlation with their scores
or completion rates in the study. On top of that, these
restrictions apply to lab studies in general and our study
does not display stronger limitations than other comparative
ones. As a result, we do not believe the setting albeit not
necessarily representative of developer’s work environment
to cause the study’s results to be of less significance.

VII. RELATED WORK

In this section, we discuss tools similar to CogniCrypt and
how they are evaluated. We also relate our study to prior
work on empirical work about software security techniques.

A. Assistance for Cryptographic APIs

Apart from CogniCrypt, multiple tools have previously
attempted to address the misuse of cryptographic [? ? ? ?
] and other security [? ? ?] APIs. However, these tools are
limited to this misuse detection. On the other hand, tools
such as CDRep [?] and FireSecBugs take a more directly
corrective approach by repairing faulty programs.

In addition to the analysis these tools provide, CogniCrypt
aims at supporting developers additionally through a use-
case-based code generation that lifts the burden of handling
low-level cryptographic APIs from the developers. In addi-
tion, CogniCrypt allows the coverage of its analysis to be
expanded by means of API-usage specifications in an external
specification language.

?] suggest high-level abstractions on top of low-level cryp-
tographic APIs. Their higher abstraction levels automatically
avoid common misuses (e.g., hard-coded keys or initialization
vectors). The client programs using those abstractions end up
significantly smaller than semantically comparative programs
that use traditional libraries. The wrapper code generated
by CogniCrypt is similar as it lifts the abstraction level that
the developer interacts with. Unlike CogniCrypt, those high-
level abstractions are not use-case-based because they still
require developers to know which cryptographic concepts

they should use in a given use case. Consequently, developers
may still misuse them, and are not helped by a misuse
detector.

Apart from CogniCrypt by ?] and Fixdroid by ?], none
of the tools discussed above come with any form of IDE
integration. Additionally, only Fixdroid has been previously
evaluated in terms of usability and usefulness for developers.
The other tools have solely been evaluated in terms of their
capabilities to find misuses in existing applications. In light
of this existing body of research on fixing cryptographic-
API misuse, we identify an empirical gap with regard to
the effectiveness of combining code generation and misuse
detection. As a result, we have selected CogniCrypt as our
evaluation object for this study to work towards closing this

gap.

B. Evaluation of Other Software Security Techniques

Our experiments expand on previous empirical research on
the effectiveness on counter measures against software inse-
curity. Prior work has investigated several aspects relating to
software security: the role of a security-focused development
process [? ?], the content, length, and desired structure of
security warnings [?], the role of resources for security
knowledge [? ?], as well as the effect of explicitly requesting
developers towards writing secure code (i.e., priming) on its
security [? ? ?].

Our work most closely resembles, in design and goal, that
of ?]. The main difference lies in the object of evaluation.
CogniCrypt combines a static misuse detector with a code
generation, supports Java, and is integrated into Eclipse,
while Fixdroid is only equipped with an analysis, is limited to
Android, and integrates with Android Studio. Fixdroid further
only checks for a few hard-coded misuses, whereas Cogni-
Crypt’s analysis component may be parameterized by usage
specifications in CRYSL. However, in contrast to CogniCrypt,
Fixdroid supports IDE-integrated fixes that are selectable by
users.

VIII. CONCLUSION

Cryptography can help secure sensitive data, but this
help often ends up ineffective because cryptography is not
integrate securely into applications. ?] have proposed the
cryptographic assistant CogniCrypt to tackle this problem
and support application developers write secure code. The
authors, however, did not empirically validate their claims. In
this paper, we have filled this gap by conducting a controlled
experiment investigating CogniCrypt’s capabilities in reduc-
ing cryptographic misuse. Through this experiment, we have
demonstrated CogniCrypt’s effectiveness. The tool signifi-
cantly improves how fast, functional, and secure developers
code cryptography applications. Participants’ criticism where
they mentioned it related mostly to implementation details
that can and should be addressed, but that also in no way
threaten the validity of the concept underlying CogniCrypt—
or even its concrete prototypical implementation.

IX. ACKNOWLEDGEMENTS

Funded by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) — SFB 1119 - 236615297 and by
the German Federal Ministry of Education and Research and
the Hessen State Ministry for Higher Education, Research and
the Arts within their joint support of the National Research
Center for Applied Cybersecurity ATHENE.

REFERENCES

[] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon
Kim, Michelle L. Mazurek, and Christian Stransky. How
internet resources might be helping you develop faster
but less securely. IEEE Security & Privacy, 15(2):50-60,
2017.

[] Hala Assal and Sonia Chiasson. Security in the software
development lifecycle. In Fourteenth Symposium on
Usable Privacy and Security, SOUPS 2018, Baltimore, MD,
USA, August 12-14, 2018., pages 281-296, 2018.

[] Gary Charness, Uri Gneezy, and Michael A Kuhn.
Experimental methods: Between-subject and within-
subject design. Journal of Economic Behavior & Organi-
zation, 81(1):1-8, 2012.

[] Alexia Chatzikonstantinou, Christoforos Ntantogian,
Georgios Karopoulos, and Christos Xenakis. Evaluation
of cryptography usage in android applications. In
International Conference on Bio-inspired Information and
Communications Technologies, pages 83-90, 2016.

[] Manuel Egele, David Brumley, Yanick Fratantonio, and
Christopher Kruegel. An empirical study of cryp-
tographic misuse in android applications. In ACM
Conference on Computer and Communications Security,
pages 73-84, 2013.

[] Felix Fischer, Konstantin Bottinger, Huang Xiao, Chris-
tian Stransky, Yasemin Acar, Michael Backes, and Sascha
Fahl. Stack overflow considered harmful? the impact
of copy&paste on android application security. In 2017
IEEE Symposium on Security and Privacy, SP 2017, San
Jose, CA, USA, May 22-26, 2017, pages 121-136, 2017.

[] Lei Gao. Latin squares in experimental design. 2005.

[] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita
Anubhai, Dan Boneh, and Vitaly Shmatikov. The most
dangerous code in the world: Validating SSL certificates
in non-browser software. In Conference on Computer and
Communications Security (CCS), pages 38-49, 2012.

[] Peter Leo Gorski, Luigi Lo Iacono, Dominik Wermke,
Christian Stransky, Sebastian Méller, Yasemin Acar, and
Sascha Fahl. Developers deserve security warnings,
too: On the effect of integrated security advice on
cryptographic API misuse. In Fourteenth Symposium on
Usable Privacy and Security, SOUPS 2018, Baltimore, MD,
USA, August 12-14, 2018., pages 265-281, 2018.

[] Boyuan He, Vaibhav Rastogi, Yinzhi Cao, Yan Chen,
V. N. Venkatakrishnan, Runqing Yang, and Zhenrui
Zhang. Vetting SSL usage in applications with SSLINT.
In IEEE Symposium on Security and Privacy, pages 519—
534, 2015.

Natalia Juristo and Ana M Moreno. Basics of software
engineering experimentation. Springer Science & Busi-
ness Media, 2013.

Christopher Kane, Bo Lin, Saksham Chand, and Yan-
hong A. Liu. High-level cryptographic abstractions.
CoRR, abs/1810.09065, 2018. URL http://arxiv.org/abs/
1810.09065.

Stefan Kriiger, Sarah Nadi, Michael Reif, Karim Ali, Mira
Mezini, Eric Bodden, Florian Gopfert, Felix Gunther,
Christian Weinert, Daniel Demmler, and Ram Kamath.
Cognicrypt: supporting developers in using cryptog-
raphy. In Proceedings of the 32nd IEEE/ACM Interna-
tional Conference on Automated Software Engineering,
ASE 2017, Urbana, IL, USA, October 30 - November 03,
2017, pages 931-936, 2017.

Stefan Kriiger, Johannes Spath, Karim Ali, Eric Bodden,
and Mira Mezini. CrySL: An Extensible Approach to
Validating the Correct Usage of Cryptographic APIs.
In European Conference on Object-Oriented Programming
(ECOOP), 2018.

Stefan Kriiger, Johannes Spath, Karim Ali, Eric Bodden,
and Mira Mezini. CrySL: An Extensible Approach to
Validating the Correct Usage of Cryptographic APIs. In
IEEE Transactions on Software Engineering (TSE), 2019.
Stefan Kriiger, Karim Ali, and Eric Bodden.
CogniCryptgen - Generating Code for the Secure
Usage of Crypto APIs. In Internationl Symposium on
Code Generation and Optimization (CGO), 2020.
Clayton Lewis. Using the” thinking-aloud” method in
cognitive interface design. IBM TJ Watson Research
Center Yorktown Heights, NY, 1982.

Siqi Ma, David Lo, Teng Li, and Robert H. Deng. Cdrep:
Automatic repair of cryptographic misuses in android
applications. In Proceedings of the 11th ACM on Asia
Conference on Computer and Communications Security,
AsiaCCS 2016, Xi’an, China, May 30 - June 3, 2016, pages
711-722, 2016.

Sarah Nadi, Stefan Kriiger, Mira Mezini, and Eric Bod-
den. Jumping through hoops: why do Java developers
struggle with cryptography APIs? In International
Conference on Software Engineering (ICSE), pages 935—
946, 2016.

Alena Naiakshina, Anastasia Danilova, Christian Tiefe-
nau, Marco Herzog, Sergej Dechand, and Matthew
Smith. ~Why do developers get password storage
wrong?: A qualitative usability study. In Proceedings
of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA,
October 30 - November 03, 2017, pages 311-328, 2017.
Alena Naiakshina, Anastasia Danilova, Christian Tiefe-
nau, and Matthew Smith. Deception task design in
developer password studies: Exploring a student sample.
In Fourteenth Symposium on Usable Privacy and Security,
SOUPS 2018, Baltimore, MD, USA, August 12-14, 2018,
pages 297-313, 2018.

Alena Naiakshina, Anastasia Danilova, Eva Gerlitz,

(1

Emanuel von Zezschwitz, and Matthew Smith. ”if you
want, i can store the encrypted password.” - a password-
storage field study with freelance developers. 2019.
Alena Naiakshina, Anastasia Danilova, Eva Gerlitz, and
Matthew Smith. On Conducting Security Developer
Studies with CS Students: Examining a Password-
Storage Study with CS Students, Freelancers, and Com-
pany Developers. In CHL. ACM, 2020. To appear.
Duc-Cuong Nguyen, Dominik Wermke, Yasemin Acar,
Michael Backes, Charles Weir, and Sascha Fahl. A stitch
in time: Supporting android developers in writingsecure
code. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017,
Dallas, TX, USA, October 30 - November 03, 2017, pages
1065-1077, 2017.

Oracle. Java cryptography architecture (JCA),
2017. https://docs.oracle.com/javase/9/security/
java-cryptography-architecture-jca-reference-guide.
htm#GUID-2BCFDD85-D533-4E6C-8CE9-29990DEB0190.
Oracle. Java secure socket extension (JSSE),
2017. https://docs.oracle.com/javase/9/security/
java-secure-socket-extension-jsse-reference-guide.htm#
JSSEC-GUID-93DEEE16-0B70-40E5-BBE7-55C3FD432345.
Frederick F Reichheld. The one number you need to
grow. Harvard Business Review, 81(12):46-55, 2003.
Shuai Shao, Guowei Dong, Tao Guo, Tianchang Yang,
and Chenjie Shi. Modelling analysis and auto-detection
of cryptographic misuse in Android applications. In
nternational Conference on Dependable, Autonomic and
Secure Computing, pages 75-80, 2014.

Tyler W. Thomas, Madiha Tabassum, Bill Chu, and
Heather Lipford. Security during application develop-
ment: an application security expert perspective. In
Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems, CHI 2018, Montreal, QC, Canada,
April 21-26, 2018, page 262, 2018.

Qing Wang, Juanru Li, Yuanyuan Zhang, Hui Wang,
Yikun Hu, Bodong Li, and Dawu Gu. Nativespeaker:
Identifying crypto misuses in android native code li-
braries. In Information Security and Cryptology - 13th
International Conference, Inscrypt 2017, Xi’an, China,
November 3-5, 2017, Revised Selected Papers, pages 301—
320, 2017.

Eclipse Website. http://www.eclipse.org, 2020.

APPENDIX

QUESTIONNAIRE

For each task, the questionnaire includes the following

questions:

Q1/8: This task was difficult.

— Type: Scale 1 (Strongly Disagree) to 5 (Strongly Agree).
Q2/9: This task was fun.

— Type: Scale 1 (Strongly Disagree) to 5 (Strongly Agree).
Q3/10: I think I solved this task correctly.

— Type: Scale 1 (Strongly Disagree) to 5 (Strongly Agree).

Q4/11: I think I solved this task securely.

— Type: Scale 1 (Strongly Disagree) to 5 (Strongly Agree).

Q5/12: Have you written or seen code for tasks similar to this

one before? For example, maybe you worked on a project that

included a similar task, but someone else wrote that portion
code.

— Type: Single-answer question.

— Possible choices: [I have written similar code; I have seen
similar code, but have not written it myself; No, neither; I
don’t know; I prefer not to say.]

Q6/13: Based on the last task, please how likely you would

recommend the coding environment to a fellow programmer.

— Type: Scale 0 to 10.

Q7/14: Please provide additional feedback about what you

found useful or not useful in the coding environment. Please

provide concrete examples when possible.

— Type: Free-text field.

We also provide another questionnaire at the end of
the experiment (ie., after finishing both tasks) that asks
participants about their programming experience Q15 -Q20,
security expertise Q21 — Q26, general demographics Q27 -
031, and more general comments on their experience Q32.
This final questionnaire includes the following questions:
Q15: How many years have you been programming in Java?
— Type: Free-text field.

Q16: How many years have you been coding in general?

— Type: Free-text field.

Q17: How did you learn to code?

— Type: Multiple-answers question.

— Possible choices: [Self-taught, Online class, College, On-
the-job training, coding, other]

Q18: Which coding environment do you primarily use (name

of the IDE or text editor)?

— Type: Free-text field.

Q19: Are you currently using the Eclipse IDE?

— Type: Single-answers question.

— Possible choices: [Yes, No]

Q20: How long have you been using the Eclipse IDE (in

years)?

— Type: Free-text field.

Q21: Do you have an IT-security background?

— Type: Single-answers question.

— Possible choices: [Yes, No, Prefer not to say]

Q22: If you answered yes in the previous question, please
specify.

— Type: Free-text field.

Q23: Which of the following options do describe your expe-
rience with cryptography best?

— Type: Single-answers question.

— Possible choices: [I have never used cryptography during
software devlopment, I invented my own cryptographic
algorithm or protocol, I implemented a cryptographic al-
gorithm or protocol, I occasionally use cryptographic APIs
or libraries during software development, I don’t know,
Prefer not to say]

Q24: Have you taken a computer-security class or course in
the last five years?

— Type: Single-answers question.

— Possible choices: [Yes, No, Prefer not to say]

Q25: If you answerd yes in the previous question, please
specify.

— Type: Free-text field.

Q26: Please tell us your highest degree of education.

— Single-answer question.

— Possible choices: [Less than high school, High school, Some
college, Bachelor’s degree, Master’s degree, Professional
degree, Ph.D., Prefer not to say.]

Q27: Please tell us your gender. ("na” for "prefer not to say”)
— Type: Free-text field.

Q28: How old are you?

— Type: Free-text field.

Q29: What country to you live in?

— Type: Free-text field.

Q30: What is your native language?

— Type: Free-text field.

Q31: What other languages are you fluent in (if any)?

— Type: Free-text field.

Q32: Please provide any additional feedback for the study
you have.

— Type: Free-text field.

