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Abstract—Docker is currently one of the most popular con-
tainerization solutions. Previous work investigated various char-
acteristics of the Docker ecosystem, but has mainly focused on
Dockerfiles from GitHub, limiting the type of questions that can
be asked, and did not investigate evolution aspects. In this paper,
we create a recent and more comprehensive data set by collecting
data from Docker Hub, GitHub, and Bitbucket. Our data set
contains information about 3,364,529 Docker images and 378,615
git repositories behind them. Using this data set, we conduct a
large-scale empirical study with four research questions where we
reproduce previously explored characteristics (e.g., popular lan-
guages and base images), investigate new characteristics such as
image tagging practices, and study evolution trends. Our results
demonstrate the maturity of the Docker ecosystem: we find more
reliance on ready-to-use language and application base images as
opposed to yet-to-be-configured OS images, a downward trend of
Docker image sizes demonstrating the adoption of best practices
of keeping images small, and a declining trend in the number of
smells in Dockerfiles suggesting a general improvement in quality.
On the downside, we find an upward trend in using obsolete OS
base images, posing security risks, and find problematic usages
of the latest tag, including version lagging. Overall, our results
bring good news such as more developers following best practices,
but they also indicate the need to build tools and infrastructure
embracing new trends and addressing potential issues.

I. INTRODUCTION

Containers provide an isolated run-time environment for
application execution; they encapsulate the application to-
gether with its dependencies, including source code, files,
and environment variables. Containers only isolate system
processes and resources but share the operating system kernel,
making them lightweight, easy to deploy, scale, and migrate.
Containerization is widely used in cloud computing [1]–[3]
and in applications with a micro-service architecture [4].

Docker [5] is currently one of the most popular container-
ization solutions [6]. An application encapsulated by Docker is
distributed in the form of a Docker image, an executable pack-
age that includes everything needed to run the application [7].
Dockerfiles are descriptive files of Docker images that specify
all the needed information about the environment and program
execution. Dockerfiles therefore play a key role in creating the
software run-time environment, and their quality may affect
the reproducibility and quality of the resulting image.

Previous work by Cito et al. [8] studied Dockerfiles hosted
on GitHub on October 2016, exploring various characteristics
such as smells in Dockerfiles and popular base images. While

that study was the first of its kind on Dockerfiles and shed light
on various characteristics of the Docker ecosystem, it, along
with other later similar studies [9]–[12] focused on mining
information solely from code repositories, namely GitHub. Xu
and Marinov argue that image repositories contain valuable
operations data as well as usage information about containers
and that such repositories should be mined for related studies,
instead of focusing only on code repositories [13]. We use
this argument as inspiration to collect additional information
about Docker images, which allows us to re-investigate some
of the previously studied phenomenon on a larger and more
comprehensive data set, as well as to study how the Docker
ecosystem has evolved over these past years.

Specifically, we use Docker Hub [14], the de facto Docker
image repository, as our primary source of data. Images hosted
on Docker Hub can be directly used in any Dockerfile and are
thus more likely to contain images that get used in practice by
developers worldwide. We then link this data to the image’s
source repository hosted on GitHub or Bitbucket. We create
a data set containing information about 3,364,529 Docker
images, covering 98.38% of images hosted on Docker Hub as
of May 3, 2020. From these images, we successfully pinpoint
378,615 git repositories behind them. To the best of our
knowledge, this is the largest and most recent available data set
of Docker images and corresponding source repositories. More
importantly, this is the first data set of Docker images that
is based on Docker Hub, GitHub, and Bitbucket, rather than
solely on GitHub. Docker Hub provides additional insightful
data, such as the image tags (similar to release names or tags),
image sizes, image builds, and the number of times an image
has been pulled from the registry.

We leverage this new, more comprehensive data set to
reproduce previously investigated characteristics, investigate
new phenomenon, and for the first time study evolution trends
in the Docker ecosystem over the last 5 years. Figure 1
provides a summary of our data set and the empirical study
we conduct, which involves the following research questions:

RQ1: What is the current state of Docker image devel-
opment and how did it evolve over time? To understand
the current state of Docker and how it evolved, we start
with a basic characterization of Docker images in terms of
programming languages, base images, OS versions, image
architectures, and image sizes. The first 2 characteristics were



previously studied [8], but the last 3 are new characteristics
we can study thanks to the data we collect from Docker Hub.
Our results show changes in programming languages, e.g.,
CSS no longer in top languages while TypeScript is gaining
usage. We also find the rise of Alpine as an OS base image,
increasing popularity of language run-time and application
base images, use of obsolete OS base images, growth of non-
AMD64 images, and a declining trend of image sizes.

RQ2: What are the current Docker image tagging
practices? Docker images are tagged with a tag name to
allow versioned development. Using data from Docker Hub,
we, for the first time, investigate how image tag names are
used and which tagging approaches are followed. We find that
some 50.48% of the studied images rely only on the latest
tag, which is error-prone and often points to the incorrect
version [15]–[18]. We also find that semantic release tagging
is more commonly used, compared to SHA pinning, which is
criticized for being unreadable [17], [19].

RQ3: How do Dockerfiles co-evolve with other source
code? Previous work studied how non-source-code files, e.g.,
build files [20], [21], co-evolve with source code. Similarly, we
investigate, for the first time, the co-evolution of Dockerfiles
and other source code. We find that Dockerfiles evolve at a
slower rate and a smaller scale than other source code.

RQ4: How prevalent are code smells in Dockerfiles?
Code smells are often used as a proxy for code quality. In
contrast to results from 2016 [8], we find that some smells such
as those causing larger image sizes are no longer as prevalent.
Instead, not catching pipe error and incorrectly using the cd

command have become more prevalent. We additionally study
the evolution of these smells and find a general declining trend
in the number of smells in Dockerfiles over time.

Our work provides a characterization of the current state
of the Docker ecosystem and how it has evolved over time.
Some of our findings, such as which base images, tagging
practices, and smells are common allow image developers
and tool builders to make informed decisions about how to
develop their containers and build container-based services
while avoiding problems. We also bring some good news; for
example, best practices, such as using smaller and tagged base
images, and keeping images small are being adopted more.

Our results can also benefit cloud service providers (e.g.,
AWS ECS & Lambda), who can provide support and tooling
for fast-growing languages and cache layers of popular base
images to accelerate the online image build. On the other
hand, our findings show that there are still some issues with
the Docker ecosystem that need to be addressed, such as the
use of outdated OS base images, and improper use of the
latest tag. Such issues can be addressed with tools that can
be integrated in Docker Hub’s continuous integration service.

In Summary, this paper makes the following contributions:
(1) We create, to the best of our knowledge, the largest avail-
able Docker data set collected from both real-world images
hosted on Docker Hub, and their source repositories from
both GitHub and Bitbucket. It contains data about 3,364,529
Docker images and 378,615 corresponding git repositories. (2)
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Fig. 1: Overview of the methods for data collection and overview
of our empirical study. We indicate the data used for each RQ.

Using this new data set, we reproduce phenomenon studied by
previous work [8] and compare our results. (3) We investigate
new evolution trends to understand the changes in the Docker
ecosystem as well as how Dockerfiles co-evolve with other
source code. (4) Given the new data from Docker Hub, we
study Docker image tagging practices as well as the evolution
of image sizes and architectures. Our data set and all analysis
scripts and results are available on our artifact page [22].

II. BACKGROUND AND TERMINOLOGY

a) Docker: Docker is currently one of the most popular
containerization solutions. An application encapsulated by
Docker is distributed in the form of a Docker image. The
Docker image is defined through a Dockerfile, which contains
all commands and environment variables required to support
the application’s execution. When the target application encap-
sulated in the image is deployed, an instance of the image is
created [14] and is referred to as the Docker container. Hence,
a Docker image is like a snapshot of the target application and
allows creating containers in a reproducible way.

One of the advantages of the Docker ecosystem is that it is
not necessary to write an entirely new Dockerfile to develop
a new Docker image. Similar to inheritance in object-oriented
programming, a Docker image can inherit image definitions
from another base image by using the FROM command. In this
case, all properties and files encapsulated in the base image
are inherited by the new image. Any Docker image can be ex-
tended and used as a base image. Listing 1 shows a Dockerfile
defining a Docker image for executing a Python script. In this
example, the image developer only needs to specify the base
image for the target Python run-time environment by using
the FROM python:3.7.3-stretch statement. By doing
so, all properties and files encapsulated in the official Python
3.7.3 language run-time image are inherited. The remainder of
the Dockerfile contains the necessary instructions required to
run the application, which will run in Python 3.7.3.

While building an image, Docker executes statements from
the Dockerfile and generates a layer for each instruction.



FROM python:3.7.3-stretch

COPY something.py /

CMD ["python3","-u","something.py"]

Listing 1: Example of a Dockerfile

Similar to git commits, each layer contains only a collection
of differences from the previous layer. The Docker image is
built from a massive pileup of layers. Each Docker image has
a unique SHA-256 code as its ID. For ease of versioned image
development and management, Docker also provides a tagging
mechanism where image developers can provide tag names for
each version. Hence, in Dockerfiles or in Docker commands,
a desired version of image can be referred to using either
its SHA256 ID or image name:tag name. Listing 1 uses
the latter. When no tag name is provided, the default tag name
is latest, which should point to the latest image version.
However, the reliance on latest is problematic [15]–[18];
we discuss these problems more in the motivation for RQ2.

b) Docker Hub: A Docker image registry is a place to
host, index, and manage Docker images. Docker Hub [23],
launched in 2014, is the largest, free and public Docker image
registry in the world. It is home to more than 3.4 million public
Docker images as of May 3, 2020, and the number is still
growing. Images published by a few certified companies and
organizations are considered as official images while images
posted by community developers are non-official images. Most
available Docker images use an official image (e.g., from
Ubuntu) as their base image. Docker images also support
various hardware architectures, such as ARM and x86. For
each image, Docker Hub records the pull count, which is the
number of times an image was pulled from Docker Hub.

There are mainly three types of official images: OS, lan-
guage run-time, and application. Docker images that only en-
capsulate a base operating system are OS Docker images; ex-
amples include Ubuntu and Debian. Language run-time images
are Docker images that provide the run-time environment for
a given programming language, such as Python and Golang.
Docker images that encapsulate a ready-to-use application are
application images, such as Nginx and PostgreSQL.

Docker Hub provides a continuous integration (CI) service
that links the GitHub or Bitbucket source repository containing
the Dockerfile and other files of a Docker image [24]. When
new code is pushed in the linked source repository, Docker
Hub automatically triggers an image build. On Docker Hub,
Docker images using such a service have a link to their
GitHub/Bitbucket source repository and have additional image
information, such as the Dockerfile of the latest successfully
built image and build status, on their overview page.

III. RELATED WORK

a) Docker studies: Despite the short history of the
Docker ecosystem, there is already some work on Dockerfiles.
Cito et al. [8] studied 70,000 Dockerfiles found on GitHub
in October 2016. They focused on the Dockerfiles stored in
GitHub repositories and did not consider information about
the corresponding Docker images, such as their tags or image

sizes. They also did not capture evolution trends. Besides,
given how Docker is becoming increasingly popular, the
dataset and empirical results obtained in their work is currently
dated. Schermann et al. [9] developed a toolchain to collect
structured information about the state and the evolution of
Dockerfiles on GitHub and released it as a public data dump
as of January 2018; they did not do a full analysis of this
information though. In their work, they concentrated on the
Dockerfile collection and obtained about 100,000 Dockerfiles.
The dataset they released was from a single source and did not
contain the information about Docker images either. In their
work, they proposed several future research questions, and our
RQ3 is inspired by one of them. In terms of quality issues
of Dockerfiles, Tak et al. [10] focused on extracting quality
issues related to security caused by compliance violations
and outdated dependencies. Similarly, Shu et al. [25] study
common security vulnerabilities in Docker images.

Very recently, Henkel et al. [11], [12] used rule mining
based on historic changes of Dockerfiles hosted on GitHub
to identify 15 rules that can be used to enforce best practices.
They then developed a rule enforcement engine, binnacle,
that can parse Dockerfiles and flag rule violations, and eval-
uated it on 178,000 Dockerfiles collected from GitHub. Their
work focuses more on smells in the bash commands used in
Dockerfiles, while the smells we consider in RQ4 stem from
both bash commands and official best practices of writing
Dockerfiles [26] (e.g., using an untagged version of an image).
Since their work was only recently published, future work
can involve applying binnacle to our much larger data
set. That said, we note that two of the smells they identify
using rule mining are already included in the smells we study
(specifically DL3015 and DL3009).

In summary, the above studies focused on Dockerfiles
collected from GitHub. The arguments provided by Xu and
Marinov [13] for the importance of looking at container image
repositories inspired us to mine data from Docker Hub. Thus,
our work is different in that, in addition to studying a larger
and more recent data set, we also collect information from
Docker Hub, which contains image-specific information, such
as the tag names, image sizes, and image builds, which are
indispensable for a holistic analysis of the Docker ecosystem.
Additionally, none of the above work studied evolution trends
to understand how the Docker ecosystem is changing. More
specifically, RQ2, RQ3, and parts of RQ1 (image sizes, OS
versions, and image architectures) are new. While the first parts
of RQ1 and RQ4 reproduce and compare previous results [8],
the second parts studying evolution trends are new.

b) IaC studies: Dockerfiles fall under the broad umbrella
of infrastructure as code (IaC) [27], so we also look at
IaC studies for general insights. Cito et al. [28] studied the
development process of cloud applications. They discovered
that IaC scripts were generally maintained by dedicated engi-
neers, and there was a tendency to shift from the IaC tools,
including Puppet, to containers for configuration management
and automation. Jiang et al. [29] found that IaC script and
source code evolved at a similar rate, while Sharma et al. [30]



1. image: Docker image info
id Image id (PK int)
image_name Image name
updated_at Last update time
pull_count Image pull count
source_repo_id Source repo id
source_repo_source CI / NameMatch
tags List of tags (id)
builds List of builds (id)
publisher Username
26 fields in total

4. dockerhubuser
username
8 fields in total

2. tag: Docker image tags
id Tag id (PK int)
tag_name Tag name
full_size Image full size
last_updated Last update time
architecture Image architecture
18 fields in total

3. build
id
12 fields in total

Text

5. repository: Source repo info
repo_id Repo id (PK int)
repo_name Repo name
repo_location GitHub/Bitbucket
owner Username
languages List of prog. lang.
branches List of branches
releases List of releases
commits List of commits (id)
38 fields in total

7. commit: Commits in the source repo
commit_id Commit id (PK int)
commit_sha Commit SHA
parents Parents of the commit
stats_addtions Number of lines added
committed_at Comitter/author com. date
changed_files List of changed files (id)
18 fields in total

8. changedfile: Changed files in each commit
changedfile_id Changed file id (PK int)
filename Filename of the changed file
status added/modified/removed
deletions_count Number of lines deleted
9 fields in total

9. githubuser
username
16 fields in total

6. dockerfile: History of Dockerfiles
dockerfile_id Dockerfile id (PK int)
repo_id Repo id
commit_sha Commit SHA of this version
content Dockerfile content
diff diff compared with its parent
committed_at Time the commit committed
13 fields in total

10. bitbucket
      user
username
5 fields in total

Fig. 2: Data set schema and partial fields description. The full
information is available on our artifact page [22]

and Rahman et al. [31] investigated code and security smells
in Puppet repositories. Our RQ3 and RQ4 are similar to these
goals but focus on Dockerfiles rather IaC scripts.

IV. DATA SET CURATION

Figure 1 shows an overview of our data collection process,
which we now describe in detail.

a) Docker Image Collection: To collect data about real-
world Docker images, we focus on public Docker images
owned by community developers and open-source organiza-
tions. This is because information about a Docker image pub-
lished by certified companies requires payment. Additionally,
the images are not subject to any open-source license and
private images are not accessible without credentials.

Using the Docker Hub API [32], we develop Docker

Image Miner and collect information about 3,364,529 pub-
lic Docker images hosted on Docker Hub. Compared to the
total number of images shown by the Docker Hub search
engine [33], which lists all hosted public Docker images, our
data covers 98.38% of public images hosted on Docker Hub as
of May 3, 2020. We mine relevant information for each image,
such as tag name, image size, image pull counts, and the link
to its source repository if it is using the CI service described
in Section II. We find that 375,518 out of the collected
3,364,529 Docker images are using the aforementioned CI
service. Among these Docker images, 357,030 of them link to
a GitHub repository, and 18,488 of them link to a Bitbucket
repository. We find that Docker images using the CI service
typically have a higher median image pull count (98.0 vs 18.0
with the exact distribution on our artifact page [22]).

b) Source Repository Collection: To collect data about
source repositories associated with Docker images, we first fo-
cus on the 375,518 images hosted on Docker Hub that use the
CI service for automatic builds. Through the CI link of each
image, we can pinpoint the corresponding GitHub/Bitbucket
source repository, where we have a full view of the source
code encapsulated in the Docker image, enabling us to answer

RQs involving other source code. We develop Source Repo

Miner that uses the GitHub or Bitbucket APIs [34], [35] to
collect data about the source repository, including basic repos-
itory information (language, size, releases, etc), Dockerfiles in
the repository, commits, and changed files in each commit.

Our goal is to find corresponding source repositories for
as many Docker images as possible. Thus, we design an
additional name matching method that allows us to detect
this relationship, even if the image does not explicitly use
the CI service. Docker Hub and GitHub/Bitbucket use the
same naming convention for Docker images and GitHub
repositories, which is “username/repository name”. There is
a high chance that some developers use the same username
and repository name on Docker Hub and GitHub/Bitbucket to
manage a Docker image project. Thus, for each image in our
data set that does not explicitly use the CI service, we search
for a repository on GitHub and Bitbucket that has the same
name. This allowed us to obtain data for an additional 64,539
images with GitHub/Bitbucket repositories, resulting in a total
of 440,057 images with associated source repositories.

c) Data Collection and Storage: We containerize both
Docker Image Miner and Source Repo Miner us-
ing Docker and deploy them on a large Kubernetes cluster
with 40 nodes distributed across the country. The miners can
continuously obtain new data from Docker Hub and the asso-
ciated GitHub/Bitbucket repositories, or update existing data.
We successfully create a data set containing information about
3,364,529 Docker images hosted on Docker Hub and 440,057
associated source repositories. Note that multiple images can
link to the same repository; there are a total of 378,615 unique
repositories in our data set. These 378,615 repositories have a
total of 23,376,349 commits and 124,192,028 changed files in
those commits. The repositories contain 434,303 Dockerfiles
with their history versions in a subset of 1,920,195 correspond-
ing commits. Overall, we collect a total of 163 fields in 10
tables, and store the data in a PostgreSQL database. Figure 2
provides the data set schema and parts of the field descriptions;
the remaining descriptions and the source code of miners are
on our artifact page [22].

d) Use of Data in RQs: Figure 1 shows a high-level
overview of the stored tables and specifies which tables and
data are used in each research question. Out of 10 database
tables, we use 6 of them in our empirical study. Answering
some questions (image size and architecture analysis in RQ1
and all of RQ2 except release tagging analysis) require only
image data from Docker Hub and so we use information
about all 3,364,529 Docker images to answer those. Answering
questions that require the actual Dockerfiles (base image
analysis in RQ1 and Dockerfile smells in RQ4) or reposi-
tory information (programming language analysis in RQ1) or
commit information (RQ3) is based on the collected 378,615
unique associated GitHub/Bitbucket repositories.

V. EMPIRICAL STUDY

We now present the results of our empirical study. For
each RQ, we provide a brief motivation behind the question,



describe the methods used to answer it, and then present our
findings and their implications.

A. RQ1: Characterization of Docker Image Development &
Its Evolution

a) Motivation: Before diving into specifics and potential
problems in the Docker ecosystem, we start with a general
characterization of the current state and how it evolved. We
study the programming languages, base images, OS versions,
image architectures, and image sizes of Docker images. Under-
standing these basic characteristics and their trends can shed
light on general community practices and how the ecosystem is
evolving. Additionally, evolution trends in terms of used base
images, OS versions, and image sizes can identify potential
security risks and if official best practices are being followed.

b) Method: For the analysis of programming languages,
base images, and OS versions, we use information from the
378,615 unique GitHub/Bitbucket repositories in our data set.
Following Cito et al. [8], we determine the programming
language of the repository as marked by the git reposi-
tory hosting platform languages field. We also use their
same regular expression to extract the base image from each
FROM statement in each analyzed Dockerfile. For the image
size and architecture analysis, we use the full_size and
architecture fields we recorded for all versions (tags) of
the 3,364,529 images we obtain from Docker Hub.

To study evolution trends, we need historic data about the
state of each characteristic in each year. For characteristics
related to actual Dockerfiles, such as the used base images
and Ubuntu versions, we can retrieve this historic data from
the git history. For other characteristics such as image size
or image architecture, Docker Hub does not store an exact
evolution history. However, as described in Section II, images
on Docker Hub can have versions or tags. Thus, we use
these versions/tags to provide us historic information. We
consider each version/tag of an image as an image available
on the year corresponding to its update date. We intentionally
consider each version/tag of an image as a standalone image
since an image may have tags with multiple architectures for
example. The only characteristic for which we have no historic
information is the programming language of each repository.
We approximate its evolution by placing a repository in a
specific year based on its last commit date.

c) Results: We now discuss the five characteristics.
Programming languages: Figure 3 shows the evolution trend

of the popular programming languages over time. We can
see that the proportion of Shell projects declines dramat-
ically, from about 48% in 2015 to around 20% in 2020.
Nonetheless, it remains the most used language. In contrast,
Python, JavaScript, and Go show an upward trend, suggesting
that developers are now containerizing applications written
in these languages more. The inherent characteristics and
popularity of each programming language can interpret the
trends we observe. Shell scripts are commonly used for setting
environments and running programs so it is natural that they
are commonly used in the related source files. Go is a popular

Fig. 3: Evolution of popular programming languages in Docker
image source repositories.

Fig. 4: Evolution of popular base images used by studied images.

solution for distributed systems and parallel computing while
JavaScript is widespread in web applications and blockchain
tools, which are inherently distributed and benefit from con-
tainerization. Based on IEEE Spectrum data [36], Python is
already the most popular programming language by far. Given
the large differences between Python versions, containerizing
the corresponding applications seems like good practice. In-
terestingly, we can see that TypeScript, which does not appear
in the top 15 languages presented by Cito et al. in 2016 [8],
has slowly started gaining popularity between 2017 and 2020.
Such changes confirm the need to study evolution trends and
understand the current state of the Docker ecosystem.

Base images: Figure 4 shows the evolution of popular base
images over time. The proportion of Docker images using
Ubuntu as the base image is declining gradually, and the
downward trend also holds for some of the other OS images,
including Debian and CentOS. Alpine is the only OS base
image with an upward trend in popularity in recent years.
Interestingly, one of the observations, and recommendations,
by Cito et al. [8] is the need to use smaller base images
(particularly Alpine) to align with the goal of containerization
in reducing the footprint of virtualization. The official Docker
documentation also recommends using Alpine as the base
image [26]. It seems that with the maturity of the Docker
ecosystem, this recommended practice is now being followed.



Fig. 5: Evolution of Ubuntu versions used as the base images.

Figure 4 also shows that the proportion of the different types
of base images on the right y-axis. We can see that language
run-time base images (e.g., Python or Golang) are growing
fast. This is consistent with our above findings that Python and
Go are among the most popular languages. The results are also
consistent with the language trend results where JavaScript,
Python, and Golang are gaining popularity over time. Given
the various trends shown in the figure, we can conclude that
while Ubuntu is still the most used base image, there is a clear
upward evolution in language run-time images. We find that
OS base images are generally declining in popularity, while
language run-time and application base images are gaining
popularity, indicating that developers may be becoming more
inclined to build and execute programs based on ready-to-use
language and application images, rather than configure the run-
time environment from scratch based on an OS image.

OS versions: Despite its decrease in popularity over the
years, Ubuntu remains the most commonly-used base image,
so we further investigate the versions of Ubuntu used by image
developers. Figure 5 shows the evolution of used Ubuntu
versions. We can see that around 20% of the images each year
use the latest Ubuntu tag, which points to the latest release
of Ubuntu with long-term support (LTS). At the time of writing
this paper, latest pointed to 20.04. We can see that each
Ubuntu LTS version (14.04, 16.04, 18.04, and 20.04) becomes
predominant in the following two years after its release. For
instance, Ubuntu 16.04, released in April 2016, was the most
popular release version used as the base image during 2017
and 2018. Such a two-year period follows the two-year release
cycle of Ubuntu LTS versions [37].

Ubuntu releases have five years of life-cycle for LTS
versions, and nine months for non-LTS releases in most
cases [37]. Ubuntu distributions that reach the end of standard
support date tend to have many outdated packages, and do
not get any official security and maintenance updates for
non-subscribed users. Hence, the security and reliability of
containerized applications that use obsolete OS base images
could be compromised. Our results on the right y-axis of
Figure 5 show that there is a surge in the proportion of
vulnerable Ubuntu releases, from 5% to 11%, as Ubuntu 14.04
LTS reached its end of life in early 2019. We anticipate that

Fig. 6: Architectures used by studied Docker images over time.

there will be another surge in 2021 when Ubuntu 16.04 LTS
reaches its end of life. Image developers should check the
version and life-cycle of OS/Application base images they
rely on. Ideally, tools that automatically warn developers about
using obsolete Ubuntu versions in their images can also help.

Image Architectures: Figure 6 shows the evolution of ar-
chitectures used by Docker images. The right y-axis shows
that while its proportion is decreasing over time, AMD64
(x86-64) is still by far dominant (over 97%) in the Docker
ecosystem. The share of ARM is growing fastest among all
non-AMD64 architectures, which suggests the need to build
tools and infrastructures for ARM-based Docker containers.

Image Sizes: Figure 7 shows the evolution of the Docker
image sizes over the past five years. Note that larger images
need longer time to deploy and distribute, and may incur
security and dependability issues. The figure illustrates a
downward trend in the median Docker image size from 2015
to 2020, suggesting that Docker images are becoming smaller
and less complex. We also perform linear trend analysis on the
size of images with five or more versions (tags) and find that
67.61% (39.63%, p-value  0.05) of images decrease in size,
while 31.07% (12.24%, p-value  0.05) of images become
larger. Such a trend indicates that developers are following
the Docker development best practices [15] to slim down the
image to make it lightweight.

Characterization of the Docker ecosystem. Python, Go,
and JavaScript, are increasing in popularity as the languages
of the containerized applications. While declining, Ubuntu
is still the most used base image, but obsolete Ubuntu
base images are increasingly being used, which may pose
security risks. Overall, there are more images relying on
language run-time or application base images, rather than
directly on OS ones. ARM is also the fastest growing non-
AMD64 image architecture. Image sizes are decreasing over
time, suggesting best practices are being followed.

B. RQ2: What are the current image tagging practices?
a) Motivation: Docker provides a tagging mechanism for

ease of versioned Docker image development and manage-
ment. Release tagging and SHA hash pinning are two official
tagging/versioning conventions [17], [19]. In release tagging,
developers reuse tag names and make them always point



Fig. 7: The distribution of Docker image sizes in MB over time

to stable releases/branches in the source repository. While
release tagging can provide semantic versioning of images
and is easily integrated with verification processes, it does not
provide a roll-back mechanism and incurs uncertainties due
to potential updates in the associated branch overwriting the
version the tag points to. On the other hand, SHA pinning uses
the digest/commit SHA as unique tag names. This guarantees
that a tag and the corresponding content will never change, and
rolling back to previous versions is possible. However, a SHA
hash is not human-readable, and SHA pinning requires more
involvement in verification processes since specific SHAs, as
opposed to branch names, need to be specified [17]. Since
each tagging/naming convention has its pros and cons and the
choice of which convention to use may depend on factors such
as the DevOps process used by developers, we do not claim
that one convention is necessarily better than another. Instead,
we simply investigate which convention is used more.

Regardless of the tagging mechanism used, a specific ver-
sion of a Docker image can be referred to with image name:tag
name. When the tag name is not specified, the default tag
name latest is fetched, which most Dockerfile developers often
expect to point to the latest version of the desired Docker
image. However, the latest tag is error-prone and may pose
a threat to the quality of containerized applications due to its
uncertainty problem [15]–[18]. If a Docker image only has
the latest tag, then it is true that this latest tag always
points to the latest version/release of the image (i.e., any
updates in the built image will overwrite the latest version).
However, if the Docker image uses multiple tags for versioned
development, the latest tag does not necessarily point to the
latest release of an image; the image developer must manually
ensure that it does. Thus, if they forget to update the version
that latest points to, it may actually point to an old version.
This is what we refer to as the version/time lag problem.
Worse, if a tag name is not specified and the latest tag is not
explicitly set up, no corresponding image will be found. We
evaluate how prevalent/serious these problems are in practice.

b) Method: The tag table in our database contains
the available tags of 3,364,529 Docker images. We use the
recorded tag_name field for all available tags, and the
last_updated field, which stores the update time of the
image each tag points to. To identify if SHA pinning is used,
we use a regular expression to identify tags named after
a SHA hash for all 3,364,529 images in the data set. To

check if release tagging is used, we analyze the corresponding
repository information for the 440,057 images with associated
source repositories. We compare their image tags with the
branches/releases/tags in their corresponding repository. For
the analysis of latest, we first check if an image has a
latest tag or not. This determines the prevalence of the
problem where no image will be fetched in the first place if a
tag name is not specified. For images with a latest tag, we
then check if the tag does point to the latest release or not.

c) Results: We find that 65,509 out of 440,057 images
with associated source repositories use release tagging, where
their image tags match releases/branches in their source reposi-
tories. Among all 3,364,529 images in the data set, only 35,136
use SHA pinning. We also analyze the tagging convention of
the top 50 popular images on Docker Hub and find that all
of them use semantic tagging and have concise and human-
readable names. Our results suggest that release tagging may
be favored by more developers, compared to SHA pinning.

With respect to the latest tag, we find that 50.48% of the
analyzed Docker images only have the latest tag. These im-
ages are not following recommended versioning practices [15].
Similar to pinning versions to ensure backward compatibility
in package management tools, such as pip or Aptitude, image
developers should always make images versioned, and avoid
using only the default latest tag in production. Since, in this
case, there is always only one available version of the Docker
image, the latest tag always points to that latest version
without any version tracking. This means that a containerized
application based on a previous version of the image may fail
due to newly added layers in the new version of the image.

Since images with only one latest tag do not follow
versioning practices, we now focus only on 1,479,833 images
with at least one self-defined tag. We find that 70.49% of these
images do not have a latest tag. In this case, a valid tag name
must be specified when using the image; otherwise, Docker
will not find the image and will report an error. To avoid
this, image developers should make the latest tag available
and always pointing to the latest stable image version.

To investigate the version/time lag problem, we focus on
757,349 Docker images that have multiple self-defined tags.
Among these, 11.39% have the latest tag but the tag does
not actually point to the latest version of the image. Worse,
3.94% have a large lag, where there are at least five released
versions beyond the version latest points to. We also observe
a large gap in the update time: 4.41% of images have latest
pointing to an image that is updated more than three months
before the current most recent version of the image. Since
many developers rely on the latest tag to get the most recent
version of the image, the above discrepancies mean that a
wrong version of the image will be fetched, since the latest
tag does not point to the real latest version of the image.

Tagging practices. Semantic release tagging of Docker
images is more commonly used over SHA pinning. About
half of the Docker images have only one default latest tag,
while ⇠ 11.39% have an outdated latest tag.



C. RQ3: How do Dockerfiles co-evolve with source code?
a) Motivation: RQ3 is inspired by one of the future

research questions proposed by Schermann et al. [9]. In most
cases, adding a new feature to the application would involve
modifying source files, but would probably not involve the
need to change the run-time environment (i.e., the Dockerfile).
This different underlying nature of a Dockerfile and the
application built on it may lead to differences in evolution rates
and scales. While Cito et al. [8] investigated the evolution of
Dockerfiles, they focused on the number of revisions per year
and on types of changes solely in Dockerfiles, not in terms of
co-evolution with source code. Since our evolution units and
scope are different here, we cannot directly compare results.

b) Method: To investigate the co-evolution of Docker-
files and source code, we use the data of all 378,615 Docker
image source repositories. These repositories correspond to
1,920,195 Dockerfiles in the dockerfile table, 23,376,349
commits in the commit table, and 124,192,028 changed files
recorded in the changedfile table. To analyze the scale
of evolution, we compare the numbers and types of line-level
changes in both Dockerfiles and other source files.

To investigate co-evolution, we calculate the ratio between
the total number of commits in a repository and the number
of commits involving Dockerfiles. For instance, a ratio of 3
means that, on average, the Dockerfile gets a revision every
three commits, indicating a slower evolution rate of the Dock-
erfile. For more meaningful evolution rates, we consider only
the source repositories of influential images with image pull
count greater than 1,000. We divide commits in the repository
history into six groups according to their commit year. We
then obtain the distribution of the Dockerfile evolution yearly.

c) Results: Figure 8 shows the distribution of line
changes in Dockerfiles and other source files in each commit.
The median number of changed lines in Dockerfiles is 6.0 vs.
14.0 for the source code, indicating that Dockerfiles evolve at
a smaller scale compared with other source code. The smaller
evolution scale also holds for added (4.0 vs 8.0) and deleted
(1.0 vs 3.0) lines of Dockerfiles compared to source code.

Figure 9 shows difference in evolution rate between Dock-
erfiles and source files. We can see that the median ratio
increases steadily over time, from 2.5 in 2015 to 4.0 in
2020, which means that not only do Dockerfiles evolve at
a slower rate than other source code, but that this evolution
rate continues to slow down. We conjecture that this may
be due to the increasing maturity of the Docker ecosystem.
When Docker was just launched, there may not have been
enough dependable Docker images that can be used as base
images. Developers had to compose Dockerfiles from scratch
to create Docker images suitable for their needs. This likely
meant that they needed to make more modifications to their
Dockerfiles to reach their desired environment. As the Docker
ecosystem becomes more mature, many certified companies
and organizations publish their official images on Docker Hub,
which usually have high quality and provide many required
features. As is evident from RQ1, more and more ready-to-use
language run-time images and application images are available

Fig. 8: The distribution of changed line count of Dockerfiles and
non-Dockerfiles (other source files).

Fig. 9: The distribution of the ratio between the source repository
commit count and Dockerfile commit count over time.

and used by more developers. Meanwhile, more and more
public Docker images maintained by other developers emerge.
Developers can simply choose an appropriate Docker image
from Docker Hub to use as the base image for building their
application. Hence, less Dockerfile changes may be needed,
explaining the decrease in the evolution rate.

Co-evolution of Dockerfiles & Source Code. Dockerfiles
evolve at a slower rate and a smaller scale than other source
code. The evolution rate of Dockerfiles, when compared to
other source code, continues to slow down.

D. RQ4: How prevalent are code smells in Dockerfiles?

a) Motivation: Docker provides a set of best practices
for writing Dockerfiles [26], [38]. These practices can help
developers avoid common mistakes, write less error-prone
Dockerfiles, and build efficient images. Understanding preva-
lent code smells can help tool builders develop tools to avoid
them as well as educate developers to pay attention to them.
Previous work by Cito et al. [8] studied such smells and found
prevalent violations. We investigate if code smells are still
prevalent in the Docker ecosystem, and study their evolution.

b) Method: We use the Haskell Dockerfile Linter [39],
a static analysis tool that parses Dockerfiles and checks for
66 types of best-practice violations, such as missing version
pinning while installing packages, uncleaned cache, and using
deprecated instructions. We show some of these smells in
Table I. To identify evolution trends for years 2015 to 2020,
we use the last updated version of the Dockerfile in that year
(similar to RQ1). For each Dockerfile in each snapshot, we
execute the linter and collect the reported violations.



Fig. 10: The distribution of smell count in Dockerfiles over time.

Fig. 11: Evolution of prevalent Dockerfile smells in popular images.

c) Results: We find that the average smell count is 5.13,
the median is 4.0, with the 25th quantile at 2.0, and the 75th
quantile at 6.0. Only 7.78% of the studied Dockerfiles are
code-smell free. Figure 10 shows the evolution of smell count
over time, where we observe a downward trend. This suggests
that the quality of Dockerfiles is getting better w.r.t number
of code smells; it could be because as the community grows,
more developers master writing less error-prone Dockerfiles.

We also investigate the evolution of prevalent code smells
in Dockerfiles. As smells in Dockerfiles of unpopular images
may not necessarily be cause for alarm, we specifically focus
on influential images whose image pull count is greater than
1,000. Figure 11 shows the proportion of the most prevalent
code smells in these Dockerfiles over time. The definition and
overall proportion of these smells are described in Table I.
Comparing to Cito et al. [8], we find that DL3008 is still
prevalent, while DL3020, DL3009, DL3006 are no longer as
prevalent as before. Instead, DL4006 and DL3003 became
more prevalent. We now discuss these smells.

Overall, DL3008 is the most frequently violated rule, which
is caused by missing version pinning in Aptitude’s installation
command apt install. Installing packages without pin-
ning a specific version can easily lead to compatibility issues,
since an unanticipated version of the package may be retrieved
based on the package management system’s cache.

DL3020 tracks incorrect usage of ADD vs. COPY, and
accounts for 9.04% of all violations. While both commands
are similar, the best practice is using ADD for extracting a
local tar file into a container while using COPY to copy other
files and directories that are not packed with tar. The good
news is that Figure 11 shows that DL3020 is quickly declining

TABLE I: The definition and overall proportion of most frequent
smells in Dockerfiles of influential images shown in Figure 11.

Rule Percentage Definition
DL3008 13.60% miss version pinning in apt install
DL3015 9.51% miss –no-install-recommends
DL3020 9.04% incorrectly use ADD instead of COPY
DL4006 8.31% not using -o pipefail before RUN
DL4000 7.65% deprecated MAINTAINER
DL3003 6.97% incorrectly use cd instead of WORKDIR
DL3009 5.64% not cleaning apt cache
DL3006 3.30% untagged version of the image
DL3025 2.33% not using JSON notation for CMD
DL3007 1.90% using the error-prone latest tag

over time. cd and WORKDIR are also similar commands; cd
should be used only in subshells, while WORKDIR should
be used to change the directory because it can automatically
create and change the working directory while avoiding any
inconsistencies. Even though DL3003 accounts for less smells
than DL3020 (6.97%), Figure 11 shows that it grows over time.

DL4006 reports if a Dockerfile does not catch pipe errors
and shows a clear upward trend. During the build stage,
the Docker engine leverages the /bin/sh -c interpreter to
execute commands specified by run. The -c option makes
bash determine success by evaluating only the exit code of
the last operation in the pipe, meaning that the image build
will still succeed even if errors happen in an interim stage. To
ensure unexpected errors at any stage cause the image build
to fail, developers should pass the -o pipefail option to
the bash interpreter before executing any run commands.

DL3009 relates to not cleaning the cache of package man-
agement tools while DL3015 is about installing additional
packages that developers do not explicitly need. As we dis-
cussed in RQ1, one of the best practices of developing Docker
images is to keep Docker images clean and small. These two
smells lead to space wastage, and are very likely to cause build
failure and expose more attack surface [12]. Developers should
always add statements in the Dockerfile to clean the cache and
avoid installing unnecessary packages. The downward trend
of both DL3009 and DL3015 again demonstrates that the best
practice of keeping image small is being adopted more.

DL3006 reports when a tag is not specified when referring
to an image and appears in the frequent smells in Table I. As
discussed in RQ3, in this case, the default tag name latest will
be used, which may lead to multiple problems.

Dockerfile Smells. The overall prevalence of code smells
causing larger image sizes is declining over time, while
not catching the pipe error and incorrectly using the cd

command became more prevalent. However, overall, the
quality of Dockerfiles is improving w.r.t code smells.

VI. DISCUSSION

Studying the Docker ecosystem using a more compre-
hensive data set that is based on both Docker Hub and
GitHub/Bitbucket allowed us to reveal prevalent (and often
problematic) practices, as well as their evolution trends. There
are several implications from our work for relevant practition-
ers as well as the Docker engine developers.



a) For Docker image developers & technology providers:
1) Always check the version and life-cycle of your dependen-
cies, and avoid using obsolete base images (RQ1). 2) Be
careful about the error-prone latest tag (RQ2), making sure
it points to the latest release version of the image. 3) Continue
to follow the practices of using lightweight base images and
keeping image size small (RQ1). 4) Avoid prevalent code
smells in Dockerfiles, such as not catching pipe errors or not
pinning versions (RQ4). 5) Our results unveil the increasing
choice of using ready-to-use language run-time and ap-
plication base images (RQ1), suggesting that organizations
who want to help developers adopt their technologies should
consider creating ready-to-use base images.

b) For Docker & infrastructure providers: 1) Add sup-
port and build tools for fast-growing ARM-based containers
(RQ1). 2) Provide an automated mechanism to remind image
developers to avoid the error-prone latest tag when pushing
new image versions (RQ2). 3) Similar to GitHub’s new vul-
nerability scanners for third-party dependencies [40], Docker
Hub could include a base image version checker as part of
its CI service, to mitigate vulnerabilities due to obsolete
base images (RQ1) 4) Container registry and Container-as-
a-Service providers can cache layers of popular base images
to increase the speed of online image builds (RQ1).

VII. THREATS TO VALIDITY

a) Construct Validity: In RQ2, version/time lags related
to the latest tag could be due to release practices, such as
alpha, beta, or canary releases. For example, a team releases
a new image version and monitors how a sub-population of
users reacts to it before updating the latest tag to that release.
As such DevOps processes are unknown to outsiders, we do
not try to differentiate these practices but instead report the
current state, which may indicate potential problems. In RQ4,
smells are not the only/full measure of Dockerfile quality;
we use smells as one potential proxy for quality here. When
studying trends of programming languages in RQ1, we do
not have snapshots of the languages used by repositories
at each year, but instead have a single snapshot in May
2020. We approximate evolution by placing a repository in
a corresponding year, based on its last commit date. Since
a source repository that got its last update in a certain year
suggests that the image is active/used in that year, our trends
can correctly reflect the programming language evolution we
studied. We do not have this problem in the other evolution
trends since we have historic data to base evolution on.

b) Internal Validity: There could be duplicate Docker
images hosted on Docker Hub, but such proportion is unknown
and is not straightforward to find. In RQ2, we check if
the release tagging convention is followed for only 440,057
images that have the linked source repository information
in the data set; thus, the actual number of images using
release tagging could be even larger than reported here.
We use GitHub’s language detection to analyze the popular
programming languages of source files in RQ1, which relies on
matching file extensions and may contain inaccuracies. Finally,

we use the Haskell Dockerfile Linter to detect smells, and the
tool itself might have inaccuracies, such as false positives.

c) External validity: To collect data from source repos-
itories of images hosted on Docker Hub, we relied on the
CI link and our name matching heuristic. This limits the
generalizability of our study since out of 3,364,529 images
from Docker Hub, we could accurately collect the source
repository information of only 440,057 images (which is still
by far larger than previous studies). Some of our results may
therefore not apply to images that do not use the CI service.
Besides, we cannot eliminate all toy projects. However, as
mentioned in Section IV, images using CI typically have a
higher pull count (median 98.0) than images not using CI
(median 18.0). Hence, we believe that images using CI are
more influential and more likely to be non-toy projects; an
empirical analysis based on them can be more reliable.

Our data set covers 98.38% of public images hosted on
Docker Hub, as of May 3, 2020. For reasons we could not
identify, the Docker Hub API does not return the remaining
1.62%. Given the small proportion, we do not expect any
impact on our results. We studied only public images hosted
on Docker Hub. To the best of our knowledge, there is no way
to get information about private images. While limiting, we do
not foresee major differences between other image registries
or public/private images that may impact our results.

VIII. CONCLUSIONS

Docker is currently the most popular containerization solu-
tion. Given this popularity and its resulting impact, under-
standing evolution trends and quality issues in the Docker
ecosystem is important. In this paper, we created a new large-
scale and comprehensive data set containing information about
3,364,529 Docker images hosted on Docker Hub and 378,615
source repositories behind them. Based on this data set, we
performed a large-scale empirical study related to various
aspects of Docker images and their evolution over time.

Our results reveal some problems with the Docker images.
Specifically, we find incorrect and problematic usage of the
latest tag, lack of use of image versioning altogether, and
usage of obsolete base OS images. The good news is that
many of these problems can be fixed with simple tooling,
which can even be integrated into Docker Hub’s existing
CI service. With the exception of the above problems, our
findings generally show a positive and healthy evolution of
the Docker ecosystem. For example, we find a downward
evolution trend in Docker image sizes over the past few
years. Our results also show that (the recommended base OS
image by Docker) Alpine is the only OS base image with a
significant upward trend in popularity in recent years. We also
find that developers are increasingly favoring lightweight and
ready-to-use language run-time and application base images,
suggesting the maturity of the ecosystem and the adoption of
more best practices. Finally, we find that the number of smells
found in Dockerfiles is decreasing over time, suggesting the
overall improvement of quality of these images. We provide
implications of all our results for various types of practitioners.
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