
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

An Empirical Study of Metric-based Comparisons of Software
Libraries

Fernando López de la Mora
University of Alberta, Canada

lopezdel@ualberta.ca

Sarah Nadi
University of Alberta, Canada

nadi@ualberta.ca

ABSTRACT
BACKGROUND: Software libraries provide a set of reusable func-
tionality, which helps developers write code in a systematic and
timely manner. However, selecting the appropriate library to use is
often not a trivial task. AIMS: In this paper, we investigate the use-
fulness of software metrics in helping developers choose libraries.
Different developers care about different aspects of a library and
two developers looking for a library in a given domain may not
necessarily choose the same library. Thus, instead of directly recom-
mending a library to use, we provide developers with a metric-based
comparison of libraries in the same domain to empower them with
the information they need to make an informed decision. METHOD:
We use software data analytics from several sources of informa-
tion to create quantifiable metric-based comparisons of software
libraries. For evaluation, we select 34 open-source Java libraries
from 10 popular domains and extract nine metrics related to these
libraries. We then conduct a survey of 61 developers to evaluate
whether our proposed metric-based comparison is useful, and to
understand which metrics developers care about. RESULTS: Our
results show that developers find that the proposed technique pro-
vides useful information when selecting libraries. We observe that
developers care the most about metrics related to the popularity, se-
curity, and performance of libraries. We also find that the usefulness
of somemetrics may vary according to the domain. CONCLUSIONS:
Our survey results showed that our proposed technique is useful.
We are currently building a public website for metric-based library
comparisons, while incorporating the feedback we obtained from
our survey participants.

1 INTRODUCTION
Software libraries provide ready-to-use functionality through their
Application Programming Interfaces (APIs), which helps developers
build reliable systems more efficiently. For a given domain such
as databases or cryptography, it is common to find more than one
available library that can perform the desired functionality. While
it is always good for client developers (i.e., developers who want
to use a library) to have several options to choose from, it is not
always clear which of these libraries is best suited for a developer’s

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PROMISE’18, October 10, 2018, Oulu, Finland
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6593-2/18/10. . . $15.00
https://doi.org/10.1145/3273934.3273937

needs. Making an inappropriate selection could have negative con-
sequences. For example, developers may decide to migrate to a
different library for reasons such as performance problems [14].

Figure 1: Excerpt of a metric-based comparison of libraries

Developers often use Q&A websites such as Stack Overflow
to inquire about libraries that are appropriate for a given task,
leading to discussions of how similar libraries compare to each
other. Although these forums inform readers on some aspects, i.e.,
features or characteristics [33], of these libraries, other relevant
aspects are usually not covered. Furthermore, users’ opinions are
typically based on their own experience rather than comparable
data such as software metrics, a term which we use to refer to
quantifiable data that describes or relates to an aspect of a library.

In a recent ICSE NIER paper, we proposed the idea of a metric-
based comparison of software libraries [7]. Similar to the idea of
online shopping where, for example, customers can compare differ-
ent specifications of a computer monitor, we argued that libraries
could also be compared based on quantifiable metrics, allowing de-
velopers to make their own informed decision about which library
is best suited to their needs. Our long-term vision was to create
a continuous surveying and crowd-sourced website that provides
developers with metric information for library selection purposes.
In that paper, we surveyed the literature to identify metrics that
can be used to compare libraries, but we did not extract the data
needed to compute all metrics, nor did we evaluate the idea. In this
paper, we implement and assess our proposed idea. Our goal is to
evaluate the usefulness of a metric-based comparison of software
libraries and to obtain developers’ feedback about which library
metrics matter to them. To accomplish this objective, we implement
an actual metric-based comparison and show it to participants as
part of a survey. Specifically, our survey is designed to answer the
following research questions:

• RQ1. Is a metric-based comparison of libraries useful for
developers when selecting a software library to use?

• RQ2. Which metrics influence developers’ library selections
when comparing software libraries?

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

PROMISE’18, October 10, 2018, Oulu, Finland Fernando López de la Mora and Sarah Nadi

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

• RQ3. Does the library domain affect metric usefulness?
To answer our research questions, we first implemented a tool

chain to compute our selectedmetrics.We calculate thesemetrics by
mining a combination of sources, namely version control systems,
issue tracking systems, and Q&A websites. As subject libraries
for our metric-based comparisons, we collected 34 open-source
Java libraries from 10 popular domains. We consolidate the metric
information that we extract in a website where we present side-by-
side comparisons of libraries of the same domain. Figure 1 shows
an example of these comparisons for the mocking domain.

We use our metric-based comparison to survey 61 Java develop-
ers from diverse backgrounds, including professional developers,
students, and researchers. Our results show that (i) a metric-based
comparison of software libraries is useful to most developers when
choosing libraries, (ii) Performance, Popularity, and Security are the
most useful metrics for developers when selecting a library, and
(iii) some metrics that developers care about are independent of the
domain (e.g. Popularity), while the usefulness of some metrics is
not relevant in certain domains (e.g. Release Frequency). We also
present an extensive discussion of 147 free-text comments from
participants, as they provide a valuable source of information that
can be used to design better decision support for library selection.

To summarize, in comparison to our NIER paper, the new contri-
butions of this paper are:

• A survey of 61 software developers to determine comparison
metrics desired by developers, and the general usefulness of
a metric-based comparison of software libraries for library
selection purposes.

• A concrete open-source implementation [2] of a library
metric-based comparison for 34 libraries from 10 domains
that we use in the survey.

• A discussion of 147 free-text comments that demonstrate
the factors and metrics that influence developers’ library
selections, and the implications of these comments. We plan
to use the collected feedback from our survey to develop a
public website for library comparisons.

2 RELATEDWORK
We divide related work into two parts: (1) assistance for library/API
selection and (2) extracting software metrics for different purposes.

Library Selection Assistance. Assisting developers in selecting
libraries, library versions, and API elements based on collected data
has been researched in previous work. Most recently, Uddin et al.
[33] mined opinions from Stack Overflow posts to summarize APIs
based on aspects such as documentation and performance. While
some of our metrics are related to aspects they discuss, we are
extracting quantifiable data from open-source repositories, issue-
tracking systems, and Stack Overflow, instead of focusing on opin-
ions from one source of information. Thung et al. [32] used data
mining techniques to recommend libraries based on the currently
used libraries of a client project. Rahman et al. [26] used questions
and answers from Stack Overflow to automatically recommend
APIs for a given task described in natural language. Teyton et al.
[30] proposed a mining technique to identify appropriate alterna-
tives to replace existing libraries in a project. Hora et al. [13] ranked
API elements based on popularity and migration data mined from

open-source repositories. Mileva et al. [20] mined popularity infor-
mation from open-source repositories to provide recommendations
of API elements. Mileva et al. [19] created a tool that assists develop-
ers in selecting the most stable version of a library based on usage
trends of library versions, including the number of projects using a
given library version. Unlike the work above, we combine several
quantifiable metrics in our comparison of libraries. Furthermore,
we do not provide a recommender system; instead, we empower
developers with information about different aspects of a library,
and leave them to make the choice based on their needs.

Software Metrics. Researchers have collected software metrics
with purposes other than providing assistance for library selection.
Linares-Vazquez et al. [17] computed the number of bug fixes and
changes in the public elements of Android APIs and correlated these
metrics with the success of client mobile applications. Teyton et al.
[31] identified library migrations in over 8,000 Java open-source
software projects by analyzing changes in library dependencies
across different versions of a project. Kabinna et al. [14] analyzed
bug reports related to library replacements and their respective
version control history to study migrations of logging libraries.
Past research has also applied sentiment analysis on information
found in software repositories. Guzman et al. [12] applied sentiment
analysis on commit comments from Github projects, and found
negative and positive sentiments linked to different characteristics
of a project. Borges et al. [4] investigated the factors that affect
popular Github repositories and used the number of repository
stars as proxy for popularity. We make additional references to
software metrics in Section 3.

3 METRICS FOR LIBRARY COMPARISON
Uddin et al. [33] found that developers who read discussion fo-
rums prefer to see information about specific API aspects including
performance, security, compatibility, community, and bugs. Accord-
ingly, we design 9 metrics that are related to these aspects for our
first implementation of a metric-based comparison of libraries. We
selected metrics for which we can accurately extract and update
their data via an automated methodology. These metrics are shown
in a table format where rows refer to metrics, column headers con-
tain libraries of a given domain, and single cells have the metric
data for libraries, as shown in Figure 1. Users could then compare
the metric data and decide which library is more convenient to
them according to their needs. In the rest of this section, we pro-
vide a definition and intuition for each metric we use, as well as
its respective extraction technique. We use the mockito library as
a working example to explain the final metrics users see. All our
code and extracted data can be found online [2].

3.1 Popularity
Definition and Intuition. Developers may simply want to use

what the majority of developers are using. We define Popularity as
the number of client projects using a given library. This approach
has been frequently used as a proxy for popularity in the literature
[13, 20]. Instead of using popularity of API elements such as classes
of a library, we focus on the number of projects using any API of a
given library.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

An Empirical Study of Metric-based Comparisons of Software Libraries PROMISE’18, October 10, 2018, Oulu, Finland

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Extraction Methodology. To obtain Popularity data, we use Boa
[8], a large-scale mining infrastructure. To count the number of
client projects of a given library, we wrote a script that searches the
latest snapshot of Java files in a project and looks for Java import
statements that include the general package of a library in these
files. If at least 1 such statement is found, we assume the project
uses the library. For example, mockito’s popularity is 5,380, which
represents its number of client projects.

3.2 Release Frequency
Definition and Intuition. Developers may be interested in know-

ing how often a library is updated, as new releases usually contain
bug fixes and added functionality. We define library Release Fre-
quency as the average time between two consecutive releases of
a library. Software release cycles have been previously studied to
understand their impact on quality assurance metrics [6, 15].

Extraction Methodology. We use the Github API to extract the git
tag information found in the repository of the library, since each
tag usually represents a release version of the software [1]. We did
not use the Github release API as we found that it did not provide
us with the full list of releases. For each tag, we extract the commit
associated with the tag and use the commit date as the release
date of the library version. To calculate Release Frequency, we find
the average of the time difference between each two consecutive
releases of the library. As an example, the Release Frequency of
mockito is 9.87 days, which represents the average time between
consecutive releases.

3.3 Issue Response Time and Issue Closing
Time

Definition and Intuition. Potential clients may want to know if
a given library’s developers are helpful and if there is an active
community around it. One quantifiable way to check this is to
see how quickly reported issues are replied to and resolved. We
refer to Issue Response Time as the average time that it takes to
receive a comment once a bug report has been opened. Similarly,
we define Issue Closing Time as the average time that it takes to
close a bug report since it was originally opened. Bug-fix times have
been researched in the literature. Examples include studying the
use of bug report attributes such as severity, priority, and assignee
to predict fixing times [9] and studying the relation of comment
sentiments in JIRA bug reports with the fixing time [23].

ExtractionMethodology for Issue Response Time. Weuse theGithub
API to obtain all issues found in a given library whose issue tracking
system is hosted on Github. If a library uses JIRA to track issues,
we export all issues as an XML file and parse the contents. For each
issue, we extract its creation date, as well as the date of the first
comment on the issue. The issue response time is then calculated
as the difference between the creation date and the date of the first
comment. We then calculate the issue response time of the library
as the average of response times for all considered issues. Note
that we discard issues that have no comments as we care about the
average time the library community took to reply to issues. We use
the first comment made by any user other than the original poster
to calculate response time, as knowledgeable users who may not be

major contributors to the project often provide useful suggestions
or feedback on the issue. Our extracted Issue Response Time for
mockito is 18.56 days.

Extraction Methodology for Issue Closing Time. We again use the
Github API to extract all issues posted in the library’s repository for
Github-hosted tracking systems. Similarly, we export all issues as
an XML file for libraries whose issue tracking systems are on JIRA.
As this metric focuses on closing times, we discard issues which
are not in a closed state. For each issue, we extract its creation and
closing dates. For bug reports hosted in JIRA, we use the resolved
date as the closing date for issues that had a closed status, as we
found that JIRA does not provide an explicit closing date in its issue
reports. The closing time of each issue is the difference between
the creation and closing dates. Finally, to calculate the issue closing
time metric for the library, we use the average of the closing time
of all closed issues. We extract an Issue Closing Time of 70.84 days
for mockito.

3.4 Backwards Compatibility
Definition and Intuition. A library is said to be backwards com-

patible if client projects can upgrade to a more recent version of
the library without having to modify code that used the library’s
APIs. Backwards compatibility problems in libraries have been stud-
ied by Mostafa et al. [21] and by Xavier et al. [35]. Libraries that
often break existing code may result in more maintenance work
from client developers, so we believe that developers may want to
see information about backwards compatibility when choosing a
library.

Extraction Methodology. We use Xavier et al.[35]’s diff tool that
analyzes two source code versions of a given library to detect
changes to three types of API elements: type, field, and method. For
types, breaking changes consist of type removal, visibility loss of
the type (e.g. from public to private), and changes in its base type.
For fields, field removals, modifications in the field’s type, visibility
loss, or different default values are considered breaking changes.
Breaking changes for methods can be due to method removals, vis-
ibility loss, changes in its return type, parameter list changes, and
exception list changes. We use this diff tool to count the number
of breaking changes between two consecutive versions of a library
for all releases R1 to Rn−1, where n is the latest release of a library.
Similar to our Release Frequency methodology, we obtain releases
of a library by collecting git tags. Finally, we calculate the average
of the resulting number of breaking changes across all analyzed re-
leases. We obtain an average of 165.16 breaking changes per release
for mockito.

3.5 Performance and Security
Definition and Intuition. Performance of a library refers to how

efficient and optimized its code is. Security of a library shows its
ability to handle sensitive information without compromising the
data and its robustness against attacks. Developers may want to
avoid libraries with many performance and/or security problems.

Extraction Methodology. To obtain quantifiable data about non-
functional attributes of a library such as performance or security,
we use bug reports as our source of information. Bug reports and

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

PROMISE’18, October 10, 2018, Oulu, Finland Fernando López de la Mora and Sarah Nadi

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

their associated fix commit messages have been previously used
to extract general metrics or infer information about software [17,
21, 23]. Textual features of bug reports have also been used to
provide classifications using machine learning techniques [16, 24].
Similar to how background checks, school transcripts, or a history
of car accidents are used to determine current reliability aspects of
individuals, we use bug reports as a proxy to measure performance
and security of a library. Since issue tracking systems such as Github
do not provide uniform issue labels (e.g. performance) for bug
reports across different repositories, we resort to a different method
to extract this information. Specifically, we use a combination of
a keyword-based approach and a classifier to label bug reports as
performance or security related. For simplicity, we will only refer
to Performance as the metric being discussed; however, we use the
same exact methodology to extract Security data.

To extract Performance data for our list of libraries, we first
collect the titles of all bug reports from Github or JIRA, based on
where the issues are tracked for each library. Our performance
extraction methodology is then divided into two steps. The first
step consists of filtering bug reports based on keywords. The second
step relies on automatically classifying the resulting bug reports
using a machine learning classifier. We use a two-step methodology,
as using only machine learning classifications resulted in a large
number of false positives. We detail these steps in the following
paragraphs.
Bug Report Filtering. We filter bug reports of a given library by
searching the titles of these reports for keywords related to general
performance problems. The list of keywords can be found in our
public repository. Examples of the keywords used include memory
leak, overflow, and deadlock.
Training Dataset. In order to apply machine learning classifiers,
we use a training dataset of 1,000 titles of bug reports, 500 labeled
as performance bug reports and the other 500 as non-performance.
To create this dataset, we first use existing manually classified bug
reports from Ohira et al. [22] which contained 320 performance
reports and 161 security reports. Additionally, in order to have
500 positive examples, we complement the dataset by adding bug
reports that we manually classified. Our manual classification was
done as follows: we searched the Bugzilla issue tracking system
for bug reports. As subject projects, we used Tomcat, Eclipse, Ant,
Thunderbird, and Firefox to perform our search as they have a
large number of bug reports and do not overlap with any of our
target libraries. We manually classified the titles of bug reports
as performance or non-performance and agreed on the labels. We
then collected the titles of the bug reports which were classified as
performance.
Bug Report Classification. Using the training data set mentioned
in the last paragraph, we trained a machine learning classifier to
provide performance or non-performance classifications for bug
reports, using only the title of the bug report as the input data. We
omit bug descriptions from our input since we found that they often
consist of steps on how to reproduce an issue, which do not provide
valuable information to the classifier, and often add noise. For each
bug report title, we eliminate stop words, and stem the remaining
words from the resulting text. We then calculate the inverse term
frequency of the resulting text and used it as input to a Multino-
mial Naive Bayes classifier. We use Multinomial Naive Bayes as it

produced better f1-score numbers when compared to other clas-
sifiers that we tried. Our comparison of classification algorithms
can be found in our repository. We validated our classifier using
a stratified 10-fold cross-validation and achieve a recall of 79%, a
precision of 87%, and a f1-measure of 83% (recall of 89%, precision of
88%, and f1-measure of 88% for our security classifier). For our final
performance metric for a given library, we report the percentage
of bug reports classified as performance-related out of all issues
found in the issue tracking system of the library. For this metric,
we consider all issues regardless of state, as closed issues can reveal
past problems of a library, while open reports may reveal current
problems. Using this methodology, we calculate that mockito had
2.14% performance-related issues and 0% security-related issues in
its issue tracking system.

3.6 Last Modification Date.
Definition and Intuition. We refer to the Last Modification Date of

a library as the last time changes were done to its code repository.
While the Release Frequency of a library provides an estimation
on how often the software is updated, it does not provide informa-
tion about the recency of the library. Last Modification Date may
indicate whether the development of a library is still active.

Extraction Methodology. We extract the date of the last commit
made in the Github repository of the library. The Last Modification
Date for mockito was January 15, 2018.

3.7 Last discussed on Stack Overflow
Definition and Intuition. This metric refers to the last time a ques-

tion was posted about a given library in the popular Q&A website
Stack Overflow. A lack of recent questions in Q&A websites may
raise some red flags about the activeness of a library’s community.

Extraction Methodology. For this metric, we collect the Stack
Overflow tags corresponding to the libraries in our list. We identify
the tag for each library by using the search by tag functionality on
the Stack Overflow website. Using the Stack Overflow API, we then
search for the most recent questions containing the identified tag
of a given library and extract the date of latest posted question. As
an example for this metric, mockito was last discussed on January
15, 2018 at the time we prepared the data for our survey.

4 DEVELOPER SURVEY
To gather data that would help us answer our research questions,
we extract the metrics described in Section 3. We use this data to
create metric-based comparisons for our survey of Java developers.
We now describe the details of this process.

4.1 Surveyed Domains and Libraries
To compare similar libraries, we chose 10 of the most popular Java
library domains in MVNRepository [3], a website that categorizes
Java libraries based on domains. These domains were testing, data-
base, utilities, xml processing, logging, object relational mapping, json
processing, mocking, security, and cryptography. For each domain,
we investigate the available Java libraries by consulting the same
website. Since we need information from software repositories and
issue tracking systems, we discard libraries which do not have these

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

An Empirical Study of Metric-based Comparisons of Software Libraries PROMISE’18, October 10, 2018, Oulu, Finland

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

systems publicly available. Additionally, we ignore libraries where
the main language used in their issue tracking systems is not Eng-
lish, since some of our methodologies rely on text analysis. Based
on this selection criteria, we apply our extraction methodology to
34 Java libraries (full list on our artifact page [2]). For each domain,
we record the gathered metric data which can then be queried to
create a table similar to that shown in Figure 1.

4.2 Survey Design
To host the survey, we built our own website and structured the sur-
vey as follows. After answering background questions about their
professions and level of proficiency in Java, participants see a list of
the available library domains and are asked to choose one domain
to evaluate. To have a balanced set of responses across domains,
we hid domains that had a high number of evaluations compared
to the other domains. This ensured that we received a balanced set
of evaluations for each domain. Thus, the list of displayed domains
dynamically changed depending on the number of evaluations per
domain. Participants then see a metric-based library comparison
table for that domain, similar to that in Figure 1. The order of the
rows with metric data did not change. Participants are able to hover
over each information icon in the table to see an explanation of
the presented metric. Participants are then asked to answer a set
of domain-specific questions based on the given comparison. Fi-
nally, participants are given the choice to either evaluate another
domain of libraries, or to proceed to the exit survey, which contains
general questions about our metric-based comparison of libraries.
The following provides details of the questions in each part of the
survey.
4.2.1 BackgroundQuestions.

QB1 What is your current occupation? undergrad. student, grad.
student, academic researcher, industrial researcher, indus-
trial developer, freelance developer, or other.

QB2 How many years of Java development experience do you have?
<1 year, 1-2, 2-5, 6-10, 11+ years.

4.2.2 Domain-specific questions. These questions are shown to
participants after they select a library domain of their choice from
a list of available options. The questions appear below the metric-
based comparison table of the given domain.

QD1 Based on the presented information, which of the above li-
braries would you select if you were looking for a [domain]
library to use? A dropdown list containing the names of the
libraries shown in the table. Only 1 library could be selected.
The purpose of this question, as well as the next 2, is to en-
sure that participants think about the presented information.

QD2 Which of the above libraries have you used before? A checklist
containing the names of the libraries shown in the table.
Multiple libraries could be selected.

QD3 Name any other libraries from this domain that you have used
before. Free-text.

QD4 Explain your reasons for your choice in QD1. Which metrics,
if any, influenced your decision? Free-text.

4.2.3 Exit Survey. Once participants finish evaluating one or more
domains, they proceed to the exit survey.

(a) Occupation

(b) Years of experience using Java

Figure 2: Background of survey participants.
QE1 On a scale of 1 to 5, with 1 being not useful at all to 5 being

very useful, how would you rate the usefulness of the following
metrics? A list of the 9 metrics is presented, with a Likert
scale from 1 to 5 for each metric.

QE2 On a scale of 1 to 5, with 1 being not useful at all to 5 being
very useful, how useful do you find the above metric-based
comparison for selecting a library to use from a given domain?
Likert scale from 1 to 5.

QE3 Are there additional metrics that you think might be helpful
for comparing libraries in a given domain? Free-text.

QE4 Please let us know if you have any further comments about
the above metric-based comparison of libraries. Free-text.

4.3 Participant Recruitment
Our survey is designed to uncover metrics that influence the deci-
sions of software developers when choosing Java libraries to use.
Our target audience is Java developers in general. To recruit differ-
ent kinds of participants, we employed three recruitment strategies.

4.3.1 Github Recruitment. To recruit developers who have used
one of our subject libraries before, we search for Github users who
contributed code to client projects of our subject libraries. As it is
not possible to contact Github users directly, we gathered e-mail
addresses as follows. We use the Github API to search for Java
repositories that included code that references API elements of our
subject libraries as the only filtering criteria. From these results,
we look at the files containing our searched API elements and
collect the git commits associated with them. Finally, we discard
git commits that were older than 6 months and obtain the e-mail
addresses of the authors of the remaining commits. We collected a
total of 298 e-mail addresses.

4.3.2 Stack Overflow Recruitment. Our second recruitment strat-
egy consisted of recruiting Stack Overflow users who have been
involved in discussions of two subject libraries of the same domain.
Such a discussion indicates that they were previously shopping
for libraries and thus getting the input of such users is important.
Since Stack Overflow does not offer functionality to contact users
directly, we search for questions containing at least two tags of
our subject libraries and collected e-mail addresses by visiting the
personal websites listed in the profiles of the users involved in those
questions. Given the manual nature of this methodology and the
fact that not all users have websites on their profiles, we collected
only a total of 20 e-mail addresses in this step.

4.3.3 Snowball Sampling. Finally, our third strategy consisted of
snowball sampling [10] where we simply asked any Java developer
to fill out the survey. We sent email invitations to the undergraduate
and graduate mailing lists of the Computer Science department at

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

PROMISE’18, October 10, 2018, Oulu, Finland Fernando López de la Mora and Sarah Nadi

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Figure 3: Number of evaluations for each domain

our university, who may have forwarded the email to others. We
also advertised the survey on social media accounts and invited
others to promote the survey.

5 RESULTS
We received a total of 61 responses in our survey. From the 318 e-
mails that we sent to Github and Stack Overflow users, we collected
24 responses (7.5% response rate), with 21 participants recruited
fromGithub and 3 from StackOverflow. The remaining 37 responses
were obtained with the snowball sampling recruitment. Out of the
61 total responses, 53 participants completed all sections of the
survey, while 8 participants answered only the background and
domain-specific questions but did not answer the exit questions.
A total of 22 participants evaluated more than 1 domain, while
the rest assessed only 1. We first give a detailed breakdown of the
collected survey data and then proceed to answer our 3 research
questions. All our reported statistics use a pairwise Wilcoxon sum
rank test to observe any statistically significant differences between
metric ratings, using α = 0.05. Since we perform multiple tests, we
use the Holm’s adjustment method for our p values. To estimate
effect sizes of any significant differences, we use Cliff’s delta with
the following ranges [11, 17]: small for d < 0.33, medium for 0.33
<= d < 0.474 and large for d >= 0.474. We use violin plots to show
the density of the data at different values.

5.1 Survey Data Breakdown
5.1.1 Background of Participants. Figure 2a shows the distribution
of participant’s backgrounds. For simplicity and better visualization,
undergraduate and graduate students are grouped under Student.
Similarly, we use the category Researcher for both industrial re-
searcher and academic researcher, and Professional Developer for
both industrial developer and freelance developer. Students present
the highest percentage of participants (49.18%), followed by Pro-
fessional Developers (39.34%). Note that there was one participant
who picked the other category in occupation and indicated that
they are a business analyst. Figure 2b shows the distribution of
years of Java experience among participants. Three quarters of the
participants (75.41%) had at least 2 years of Java experience.

5.1.2 Domain & Library Breakdown. The number of evaluations
per library domain are shown in Figure 3. Note that the same
participant may have evaluated more than one domain. Testing,
Database, XML, and Utilities are the most evaluated domains, each
consisting of 14 domain-specific survey responses, while Security
is the least evaluated with 3 responses. In 29.46% of responses to
Section 4.2.2, participants chose a library they had not previously
used. We provide a detailed breakdown of the selected libraries in
our artifact page.

(a) Ratings by occupation

(b) Ratings by experience

Figure 4: Usefulness ratings for QE2

5.2 RQ1. Is a metric-based comparison of
libraries useful for developers when
selecting a software library to use?

We start by first answering RQ1, which evaluates the overall useful-
ness of metric-based library comparisons. We do so by analyzing
the 53 answers for QE2 of the survey. Figure 4a shows the distri-
bution of ratings for QE2. The first four violin plots in the figure
show the distributions of ratings per occupation group, while the
fifth plot shows the distribution of ratings by all participants. When
considering all participants, the right-most plot in Figure 4a shows
that the highest frequency of answers is concentrated near rating
4 (i.e., Useful) based on the Likert scale. The mean rating of all
participants for QE2 is 3.85 and the median is 4.

We now look at the ratings per participant group, but ignore the
other category since it has only one participant. Looking at the first
three plots in the figure, we can see that Professional Developers
have rated the usefulness of a metric-based comparison the highest
with a mean rating of 4.05, Researchers have an average rating of
3.83, and Students have an average rating of 3.65. Despite of this,
we find no statistically significant differences between the ratings
of the occupations. While Figure 4b shows a small ascending trend
of the ratings as experience increases starting from the 1-2 years
group, we also find no significant differences between the ratings
of the Java experience groups. We can therefore conclude that
most participants from all backgrounds found our metric-based
comparison useful for selecting libraries.

Finding.1: When comparing software libraries, our participants,
regardless of background, find a metric-based comparison of
libraries useful (mean rating = 3.85).

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

An Empirical Study of Metric-based Comparisons of Software Libraries PROMISE’18, October 10, 2018, Oulu, Finland

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 5: Rating distributions of QE1 for all metrics.

5.3 RQ2: Which metrics influence developers’
library selections when comparing
software libraries?

To answer the second research question, we use three sources of
data from our survey. The first is the individual ratings of each
metric in question QE1. The second is the free-form answers to
QD4 where participants explicitlymentionedwhichmetrics affected
their decision when selecting a library and why. The third is the
free-form question QE3, where participants mention additional
metrics they would like to see.

Figure 5 shows the distribution of the ratings for each metric
and also indicates the mean score. All metrics have a mean above
3.0 with the exception of the Last Discussed On Stack Overflow
metric, whose mean is 2.96. Performance, Popularity, and Security
were the 3 highest rated metrics by participants, with mean ratings
4.08, 4.06, and 4.00 respectively. Additionally, we find that each
of these 3 metrics has statistically significant differences with the
metrics Issue Closing Time and Last Discussed on Stack Overflow.
Analyzing the magnitude of these differences, we observe medium
effect sizes (d = 0.38) between Popularity and Issue Closing Time,
and between Popularity and Last Discussed on Stack Overflow (d
= 0.45). For Security, the results show a medium effect size with
Issue Closing Time and Last Discussed on Stack Overflow (d = 0.38
and 0.42 respectively). Finally, for Performance, the tests also reveal
medium effect sizes with Issue Closing Time (d = 0.41) and with
Last Discussed on Stack Overflow (d = 0.45). Thus, we can conclude
that compared to the other metrics, Performance, Popularity and
Security are indeed metrics that have more influence on developers’
decisions.

To gain insights about the top-rated metrics, we analyze the
free-form answers fromQD4. We use P1 to PN when quoting differ-
ent participants. We observe that participants are concerned about
possible unnecessary overhead to their applications that libraries
may add, which might serve as explanation for the high mean for
Performance. For example, P1 said that “[...] logging already added
some overhead, I don’t really want any performance issues with the
library that I’m using”. For Popularity, we observe that participants
associate this metric with library quality and support, as the com-
ments of P2, P3, and P4 suggest: “Popularity is a good proxy for
quality”, “... These 2 metrics [Popularity and Last Modification Date]
are a good indicator of the quality of a library”, and "It’s popular
so I guess it should have something good”. Moreover, Popularity is
also associated with library support, as we can infer from these
comments by P4, P5, and P6: “Popular libraries tend to have the most

support", “...usually more popular libraries are better developed and
supported”, and “Popularity reflects the sustainability of the library".
Although Security is positioned as the third highest rated metric,
we did not find explanations for this fact in our collected answers.
However, since several of our subject domains deal with handling of
data, we speculate that developers most probably consider integrity
and confidentiality of data as an important factor when choosing
libraries.
Finding.2: Performance, Popularity and Security are rated highest,
and each had two statistically significant differences in their
ratings w.r.t other metrics.

To find additional metrics that developers care about that we did
not consider in our comparison, we analyze the free-form answers
for QE3 of the Exit Survey. This question explicitly asked partici-
pants about additional metrics they would like to see. In total, 39 of
our participants left comments for this question. To analyze their re-
sponses, we use an open coding approach from grounded theory [5],
specifically card sorting. The two authors of this paper wrote each
metric that a participant mentioned on a piece of paper. Then we
iteratively grouped related metrics, until distinct categories were
formed. Table 1 shows the categories we found, along with the
number of associated answers and the definition of the category.
Additionally, we did not understand the comments by 4 participants
so we do not include them in our categorization. In Section 6, we
discuss the implications of our findings and how existing research
can be used to extract some of the additional metrics mentioned by
participants.
Finding.3: Additional metrics related to documentation and us-
ability of a library are highly desired by developers.

5.4 RQ3. Does the library domain affect metric
usefulness?

Since our metric comparison is organized by domain, we are inter-
ested to see if the perceived usefulness of the metrics depends on
the domain. To investigate this, we use two sources of data. The
first is the metric ratings from QE1 from the exit survey, and the
second is the free-form answers to QD4 from the domain-specific
questions where participants explicitly mention the metrics that
affected their decision.

For QE1, we analyze the metric ratings per domain by using
survey responses that evaluated a single domain. This means that
we do not consider participants who evaluated more than one do-
main, such that we can get a one-to-one mapping between domain
and metric rating. We have 35 such ratings to analyze. We find
that while there are no large differences among the average ratings
per domain for metrics such as Popularity, Release Frequency, and
Last Modification Date, the Security metric shows large differences
between distinct domains. We visualize three metrics, including
Security, that show large differences among domains in Figure 6.
Plots for the remaining metrics are on our artifact page. Note that
we do not include a column for the Security domain in our plots
since there are no responses that evaluated only this domain.

Given that the number of one-to-one domain-metric ratings are
not that high (e.g., 1 rating in the Cryptography domain vs. 5 rat-
ings in the JSON domain), we do not perform statistical tests to

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

PROMISE’18, October 10, 2018, Oulu, Finland Fernando López de la Mora and Sarah Nadi

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(a) Usefulness ratings for the Security metric by domain

(b) Usefulness ratings for the Release Frequency metric by domain

(c) Usefulness ratings for the Performance metric by domain

Figure 6: Examples of differences in metrics by domain

compare these populations since the results of the tests would be
meaningless. Instead, we triangulate the descriptive statistics in
Figure 6 with the answers to QD4, where participants discussed
which metrics influenced their decision to select a library. We have
108 comments inQD4, since many participants evaluated more than
one domain. We analyze the comments and count the number of
times each metric is mentioned. We present a heat map in Figure
7 based on these counts. Darker colors indicate more mentions by
participants. The heat map confirms our results from the metric
ratings in the previous paragraph. We can see that Popularity is
frequently explicitly mentioned as a reason to choose a library for
most domains. In contrast, the Last Discussed on Stack Overflow
metric was barely mentioned by participants. As previously dis-
cussed, Security seems to be a metric that is only relevant in some
domains, such as databases and cryptography, but completely irrel-
evant in other domains such as utilities or testing. To understand
why metric usefulness may vary among domains, we look at ex-
planations provided by participants in QD4 as well as any relevant
comments from the general additional comments part QE4.

Table 1: Categories of additional metrics and the number of
participants mentioning these metrics.
Category # of

participants Definition

Documentation Quality 14 Recency and availability of library documentation
and learning materials

Library Usability 8 Metrics related to the ease of use and learning curve
of a library.

General Library Information 8 Statistics about a library and its public repository.
Library Functionality 5 Information about the functionality offered by a library.
Community Support 5 Statistics about community aspects from a library.
Legal 3 Information about licensing and ownership of a library

Compatibility 3 Information about the library’s compatibility with other software
such as libraries, platforms, and programming language versions.

Dependencies 2 Other software that needs to be installed to use a library.

Library Alternatives 2 Information about similar libraries including from other
programming languages.

Crowd-sourced Opinions 2 Opinions and reviews found in Q&A websites
Robustness 2 Reliability of a library.

Quality Assurance 3 Information about testing suites and continuous integration
statistics of a library.

Memory 1 Information about the memory usage of a library.

Figure 7: Heatmap of frequency of metrics mentioned
by participants in QD4. Darker colors indicate higher fre-
quency.

Security is intrinsic to certain domains: “Since this is a crypto API,
I’d like to use a library that has the least security issues” - P1. On the
other hand, Security provides little use for specific domains to some
participants, as P7 suggests: “Importan[ce] of metrics depends on
the library. I don’t care about the security of JUnit.” We can observe
this opinion reflected in Figure 6a, where the testing and mocking
domains have low ratings for the Security metric. Similarly, Per-
formance is seen as crucial for some domains, as P8 describes “In
ORM, the first thing I care about is performance in enterprise projects”.
For Release Frequency, shown in Figure 6b, certain domains may
provide more stable library releases and therefore, the metric is less
important, as P7 points out: “Testing frameworks do not need to be
released all the time. They are stable.”

Finding.4: Some metrics are more intrinsic to certain domains
than others. Examples include Security, Performance, and Re-
lease Frequency.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

An Empirical Study of Metric-based Comparisons of Software Libraries PROMISE’18, October 10, 2018, Oulu, Finland

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

6 DISCUSSION
A metric-based comparison of software libraries has two main
challenges: (1) knowing which metrics to include and (2) designing
a method to accurately extract these metrics and present them in an
intuitive way. Our survey focuses on the first challenge: it evaluates
whether a metric-based comparison of software libraries is useful
to developers, and helps uncover which metrics developers care
about when making a choice. However, the comments provided
by our participants give us valuable suggestions and insights on
how to address the second challenge. In the rest of this section, we
discuss improvements and the most requested missing metrics as
mentioned by our survey participants and we provide our insights
on how these suggested metrics could be extracted.

Table 1 shows that documentation quality is by far the most
demanded metric, even though it is hard to quantify, as mentioned
by one participant. There is a vast amount of work on how to im-
prove documentation (e.g., [28]), beyond what we can mention in
this paper. While concretely quantifying documentation is hard,
techniques such as mining various information sources and present-
ing related links on our metric-based website, e.g. linking the API
used in the documentation to the library [29], are feasible. Other
options include automating documentation search techniques, such
as those presented by Parnin and Treude [25], or using patterns
of knowledge in API documentation as a means to assess their
quality [18]. We plan to investigate how existing documentation
techniques can be summarized and quantified in a way that quickly
gives developers an indication of availability and quality.

The next most demanded metric relates to library usability;
specifically, how easy it would be to use the API. Since this is
also hard to quantify, an option is to leverage the vast amount of
research that is able to mine API usage examples [27] and present
code snippets to developers, which could then assess if the code
look easy to use or not.

Participants also suggested providing general information about
a library. For example, surprisingly, two participants mention code
size while we thought client developers would not necessarily care
about low-level details of the library. Others mention more high-
level general information metrics such as absolute number of re-
leases and how old the library is.

Five participants mention that understanding the functionality
offered by the library is important, while one participant wishes
to see the overlap in functionality with other libraries. Another
comment suggests having code examples for each of the library
functionalities. The community support around a library seems to
also be very relevant for users. While we had metrics related to this
aspect, additional metrics such as the size of the community and
how often the library is discussed in various blogs and resources
were suggested. Such metrics could be automated by mining the
web and looking at networks of related developers.

Interestingly, one aspect that we did not consider but that is
very important in practice is the licensing of a library. GitHub
already states the licenses used in each project, or license mining
can also be used [34]. Similarly, it makes sense that developers
are interested if a given library is compatible with libraries that
they are using, as well as what dependencies they would need to
include for this library to work correctly. Techniques for mining

library dependencies can also be used to extract such information.
Among the remaining categories, crowd-sourced opinions could be
obtained from Q&A websites by mining opinions [33].

As suggestions on the current metrics, participants mention im-
proving the presentation of the metric information, such as adding
graphical representations of the data (e.g. using trend graphs to
visualize metrics such as Issue Response Time) or aggregated scores
for each library (e.g. 5-star rating for each library summarizing all
of its metrics data.). Finally, based on Finding 4, we believe that
displaying customizable metric-based comparisons based on the
domain (e.g. displaying the most important metrics of the domain
first) may be useful to users. The fact that distinct participants in
our survey often rated the same metric differently supports our
reasoning that developers may care about different characteristics
of a library depending on their needs. This further sustains our
belief that it is important to provide developers with all relevant
data, in an easily comparable form, and leave them to decide which
parts of this data they will use for their choices.

7 THREATS TO VALIDITY
7.1 Internal Validity

Metrics. The list of metrics used in the survey is not comprehen-
sive for the purposes of library comparisons, as Section 6 suggests,
and there is room for improvement in terms of our extraction and
presentation methods. However, the goal of this is to assess the
general usefulness of metric-based comparisons and to gather in-
formation and feedback about the metrics that are most important
to developers, with the objective of creating a publicly available im-
plementation in the future. Therefore, our survey findings are not
affected by potential small inaccuracies of the metrics we employed,
especially in a comparison context.

Implementation of scripts. To mitigate any potential bugs in the
scripts we use to extract data for our metrics, we manually verified
various samples of the results. Additionally, we make our scripts
publicly available for others to verify or replicate our work.

Usage of import statements and Boa. Relying on import state-
ments to collect popularity information may not reflect actual usage
of the imported API elements. However, it provides an upper bound
estimation of the popularity of a library. Another threat concerns
the age of the dataset of projects used to obtain our data, as it
dates to September 2015. While this dataset may not reflect current
library usage trends, and would be older than the data used for
the other metrics, it still shows the relative popularity since the
same data set is used for all libraries and this is sufficient for the
purposes of our survey. For our website implementation, we plan
to not depend on Boa for this task in order to provide updated data.

Training Dataset for Classification. To create a dataset of bug
reports related to performance and security problems, we man-
ually classify bug reports based on their title. This could impact
the predictions of the classifier. To mitigate this threat, 2 authors
of this paper agreed on the manual classifications of bug reports.
Additionally, we use the titles of bug reports provided by other
researchers [22]. Performance and Security are difficult metrics to
accurately quantify and we plan to investigate alternative methods.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

PROMISE’18, October 10, 2018, Oulu, Finland Fernando López de la Mora and Sarah Nadi

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

7.2 External Validity
Survey Results. The findings presented in this work are based

only on our sample set of participants and may not generalize
beyond this context. However, to reduce possible opinion biases,
we recruited participants with varying backgrounds and through
different sources.

List of Libraries. Our survey website did not provide an exhaus-
tive list of libraries per domain as not all libraries had publicly
available repositories and issue tracking systems. This may affect
our findings and conclusions, but we believe this effect would be
confined to the library choice inQD1, which was not explicitly used
in our data analysis.

8 CONCLUSIONS
Selecting the best-suited software library to use is often a non-trivial
task for developers. In this paper, we implemented and evaluated
the idea of using data analytics of various software repositories to
create metric-based comparisons of libraries to assist developers
with this selection. Through the answers of 61 surveyed developers,
we found that metric-based comparisons are useful to most devel-
opers. Additionally, our survey results showed that Performance,
Popularity, and Security are the most useful metrics to developers,
with Popularity being useful across all library domains. Finally,
participants indicated that they would like to see metrics related to
aspects such as usability, documentation, functionality, community
support, and licensing. Participants also provided us with some
suggestions for presentation improvements of our current metrics.
We are currently building a public metric-based library comparison
website for the community to use, and plan to take participants’
recommendations into account.

REFERENCES
[1] 2018. Git Tags. (2018). https://git-scm.com/book/en/v2/Git-Basics-Tagging.
[2] 2018. Library Metric Comparison Online Artifact. (2018).

https://github.com/ualberta-smr/LibraryMetricScripts.
[3] 2018. MVNRepository. (2018). https://mvnrepository.com/.
[4] H. Borges, A. C. Hora, and M. T. Valente. 2016. Understanding the factors that

impact the popularity of GitHub repositories. CoRR abs/1606.04984 (2016).
[5] Juliet Corbin and Anselm Strauss. 2008. Basics of qualitative research. Techniques

and procedures for developing grounded theory (3rd ed.).
[6] Daniel Alencar da Costa, Shane McIntosh, Uirá Kulesza, and Ahmed E. Hassan.

2016. The impact of switching to a rapid release cycle on integration delay of
addressed Issues: an empirical study of the Mozilla Firefox project. In Proc. of the
International Conference on Mining Software Repositories (MSR). 374–385.

[7] Fernando López de la Mora and Sarah Nadi. 2018. Which library should I use? A
metric-based comparison of software libraries. In Proceedings of the 40th Interna-
tional Conference on Software Engineering New Ideas and Emerging Results Track
(ICSE NIER ’18).

[8] Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. 2013. Boa: a
language and infrastructure for analyzing ultra-large-scale software repositories.
In Proceedings of the 2013 International Conference on Software Engineering (ICSE
’13). 422–431.

[9] Emanuel Giger, Martin Pinzger, and Harald Gall. 2010. Predicting the fix time
of bugs. In Proceedings of the 2nd International Workshop on Recommendation
Systems for Software Engineering (RSSE ’10). 52–56.

[10] Leo A. Goodman. 1961. Snowball Sampling. Ann. Math. Statist. 32, 1 (03 1961),
148–170.

[11] Robert J Grissom and John J Kim. 2005. Effect sizes for research : a broad practical
approach. Mahwah, N.J. ; London : Lawrence Erlbaum Associates. Formerly CIP.

[12] Emitza Guzman, David Azócar, and Yang Li. 2014. Sentiment analysis of commit
comments in GitHub: an empirical study. In Proceedings of the 11th Working
Conference on Mining Software Repositories (MSR 2014). 352–355.

[13] Andre Hora and Marco Tulio Valente. 2015. Apiwave: keeping track of API
popularity and migration. In Proceedings of the 31st IEEE International Conference

on Software Maintenance and Evolution (ICSME ’15). 321–323.
[14] Suhas Kabinna, Cor-Paul Bezemer, Weiyi Shang, and Ahmed E. Hassan. 2016.

Logging library migrations: a case study for the Apache Software Foundation
projects. In Proceedings of the 13th International Conference on Mining Software
Repositories (MSR ’16). 154–164.

[15] Foutse Khomh, Tejinder Dhaliwal, Ying Zou, and Bram Adams. 2012. Do faster
releases improve software quality?: an empirical case study of Mozilla Firefox. In
Proceedings of the 9th IEEE Working Conference on Mining Software Repositories
(MSR ’12). 179–188.

[16] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals. 2010. Predicting the severity
of a reported bug. In 2010 7th IEEE Working Conference on Mining Software
Repositories (MSR 2010). 1–10.

[17] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Massimiliano
Di Penta, Rocco Oliveto, and Denys Poshyvanyk. 2013. API change and fault
proneness: a threat to the success of Android apps. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering (ESEC/FSE 2013). 477–487.

[18] WalidMaalej andMartin P Robillard. 2013. Patterns of knowledge inAPI reference
documentation. IEEE Transactions on Software Engineering 39, 9 (2013), 1264–
1282.

[19] Yana Momchilova Mileva, Valentin Dallmeier, Martin Burger, and Andreas Zeller.
2009. Mining trends of library usage. In Proceedings of the Joint International
and Annual ERCIM Workshops on Principles of Software Evolution (IWPSE) and
Software Evolution (Evol) Workshops (IWPSE-Evol ’09). 57–62.

[20] Yana Momchilova Mileva, Valentin Dallmeier, and Andreas Zeller. 2010. Mining
API popularity. In Proceedings of the 5th International Academic and Industrial
Conference on Testing - Practice and Research Techniques (TAIC PART’10). 173–180.

[21] Shaikh Mostafa, Rodney Rodriguez, and Xiaoyin Wang. 2017. Experience paper:
a study on behavioral backward incompatibilities of Java software libraries. In
Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing
and Analysis (ISSTA 2017). 215–225.

[22] Masao Ohira, Yutaro Kashiwa, Yosuke Yamatani, Hayato Yoshiyuki, Yoshiya
Maeda, Nachai Limsettho, Keisuke Fujino, Hideaki Hata, Akinori Ihara, and
Kenichi Matsumoto. 2015. A dataset of high impact bugs: manually-classified
issue reports. In Proceedings of the 12th Working Conference on Mining Software
Repositories (MSR ’15). 518–521.

[23] MarcoOrtu, BramAdams, GiuseppeDestefanis, Parastou Tourani, MicheleMarch-
esi, and Roberto Tonelli. 2015. Are bullies more productive?: empirical study of
affectiveness vs. issue fixing time. In Proceedings of the 12th Working Conference
on Mining Software Repositories (MSR ’15). 303–313.

[24] Nitish Pandey, Abir Hudait, Debarshi Kumar Sanyal, and Amitava Sen. 2018.
Automated classification of issue reports from a software issue tracker. 423–430.

[25] Chris Parnin and Christoph Treude. 2011. Measuring API documentation on the
web. In Proceedings of the 2Nd International Workshop on Web 2.0 for Software
Engineering (Web2SE ’11). ACM, 25–30.

[26] M. M. Rahman, C. K. Roy, and D. Lo. 2016. RACK: automatic API recommendation
using crowdsourced knowledge. In 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER), Vol. 1. 349–359.

[27] M. P. Robillard, E. Bodden, D. Kawrykow, M. Mezini, and T. Ratchford. 2013.
Automated API property inference techniques. IEEE Transactions on Software
Engineering 39, 5 (May 2013), 613–637.

[28] Martin P Robillard, Andrian Marcus, Christoph Treude, Gabriele Bavota, Oscar
Chaparro, Neil Ernst, Marco Aurélio Gerosa, Michael Godfrey, Michele Lanza,
Mario Linares-Vásquez, and others. 2017. On-demand developer documentation.
In Proceedings of the IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 479–483.

[29] Siddharth Subramanian, Laura Inozemtseva, and Reid Holmes. 2014. Live API
documentation. In Proceedings of the 36th International Conference on Software
Engineering. ACM, 643–652.

[30] C. Teyton, J. R. Falleri, and X. Blanc. 2012. Mining library migration graphs. In
2012 19th Working Conference on Reverse Engineering. 289–298.

[31] Cédric Teyton, Jean-Rémy Falleri, Marc Palyart, and Xavier Blanc. 2014. A study
of library migrations in Java. Journal of Software: Evolution and Process 26, 11
(Nov. 2014), 1030–1052.

[32] Ferdian Thung. 2016. API recommendation system for software development. In
Proceedings of the 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE 2016). 896–899.

[33] Gias Uddin and Foutse Khomh. 2017. Automatic summarization of API reviews. In
Proceedings of the 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE ’17).

[34] C. Vendome, M. Linares-Vásquez, G. Bavota, M. Di Penta, D. German, and D.
Poshyvanyk. 2017. Machine learning-based detection of open source license ex-
ceptions. In 2017 IEEE/ACM 39th International Conference on Software Engineering
(ICSE). 118–129.

[35] Laerte Xavier, Aline Brito, Andre Hora, and Marco Tulio Valente. 2017. Historical
and impact analysis of API breaking changes: a large scale study. In 24th Interna-
tional Conference on Software Analysis, Evolution and Reengineering (SANER ’17).
138–147.

10

