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ABSTRACT
Software libraries ease development tasks by allowing client devel-
opers to reuse code written by third parties. To perform a specific
task, there is usually a large number of libraries that offer the de-
sired functionality. Unfortunately, selecting the appropriate library
to use is not straightforward since developers are often unaware of
the advantages and disadvantages of each library, and may also care
about different characteristics in different situations. In this paper,
we introduce the idea of using software metrics to help developers
choose the libraries most suited to their needs. We propose creating
library comparisons based on several metrics extracted from multi-
ple sources such as software repositories, issue tracking systems,
and Q&A websites. By consolidating all of this information in a
single website, we enable developers to make informed decisions by
comparing metric data belonging to libraries from several domains.
Additionally, we will use this website to survey developers about
which metrics are the most valuable to them, helping us answer the
broader question of what determines library quality. In this short
paper, we describe the metrics we propose in our work and present
preliminary results, as well as faced challenges.

1 INTRODUCTION
Software libraries provide ready-to-use functionality by exposing
Application Programming Interfaces (APIs) to client developers. To
accomplish a specific task (e.g. encrypting a file), there is usually a
repertoire of libraries available that can achieve the desired objec-
tive. However, with so many libraries to choose from and different
factors to consider, picking the appropriate one to use is usually
not an easy decision. For example, selecting a library that is bug-
prone could result in unexpected program behavior. Similarly, a
library that lacks community support could mean that the software
is no longer maintained and that there is no one available to an-
swer questions about it. Such problems could make a client project
completely abandon a library in favor of a similar one [5, 14].

Similar to previous work [15], we use term aspect to refer to fea-
tures or characteristics of software libraries. Additionally, we refer
to a software metric as a quantifiable measurement that describes
an aspect. For instance, release frequency and average time to close
a bug report are both metrics related to the software support aspect.
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Figure 1: Comparison of testing libraries

Uddin et al. [15] showed that developers care about API aspects
such as performance, usability, security, documentation, compat-
ibility, community, and bugs. Such aspects could help determine
whether or not a specific library is a good option for a given task
when compared to similar libraries. While it is possible to find some
questions and answers about API aspects on websites such as Stack
Overflow, this information usually focuses on a limited number of
aspects and does not provide the readers with the full picture of
the library being discussed. Additionally, most of the information
is text-based in the form of users’ opinions and users need to sift
through many posts to extract useful information. Similar to how
customers can compare metrics of different products that belong to
the same category when shopping online (e.g., comparing monitors
in terms of resolution and screen size), we argue that presenting
metrics that help provide a quantifiable comparison of API aspects
could help developers make an informed decision about which li-
brary in a given domain is most suited to their project needs. The
challenge is determining which software metrics make sense in the
context of software libraries, and which of these metrics can be
used to assess library quality.

Previous research has focused on measuring different attributes
of software systems [7, 10, 12, 14, 16]. These include, for example,
number of changes/deletions, release frequency, fault-proneness,
and time to close issues. In this paper, we argue that many of these
attributes can be used as quantifiable metrics for comparing soft-
ware libraries. We propose collecting relevant metrics from diverse
data sources, such as version-control and issue-tracking systems,
and consolidating them in a single website that developers can use
to compare libraries from the same domain (e.g., cryptography or
testing). Figure 1 shows a mockup of this website.

Our goal with creating this library metric comparison website
is two-fold: (1) we aim to provide developers with a single source
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of information that will assist them in selecting the appropriate
libraries for their projects, and (2) we will use the website as a con-
tinuous surveying and crowd-sourced mechanism to find out which
metrics influence developers’ decisions when choosing libraries,
and also which metrics can be used to assess library quality.

2 MOTIVATION
In this section, we present a real motivational example and define
our problem statement and goals. We also discuss previous work
that had similar goals and how they differ from ours.

Motivational Example. Q&A websites, such as Stackoverflow,
show that developers often care about certain library characteristics,
but may not be aware of others. For example, question #11707976
on Stackoverflow is asked by user user568021, who needs a Java
cryptography library to encrypt files for her application. She men-
tions that the library cryptix has all the functionality that she needs.
However, she adds that development of the library was halted since
2005. Due to this reason, she asks about alternative libraries. Among
the received answers, user fvu also recommends against using cryp-
tix as she thinks that the software is abandoned: "I would seriously
think twice before going this route. The development of the software
was halted because standard alternatives exist, and have a look at the
mailing list, there’s been no significant activity since 2009. In my book
that means that the software is abandoned, and abandoned software
means you’re more or less on your own." In the same answer, user
fvu suggests using the library jasypt, to which the original poster
comments that she has already tried such suggestion, but has found
a bug which deterred her from continuing to use that library: "Yeah
I tried jasypt but it has some bug in the binary decryption, I really
don’t want to deal with them right now."

Problem Statement. As shown in the motivational example, li-
brary aspects, such as lack of community support and defective
functionality, can be decisive factors when it comes to choosing
a software library. The example discussed two metrics for mea-
suring the community support aspect, last development date and
last activity date. There may be additional library aspects that are
important for client developers, as well as various metrics that can
be used to infer information about these aspects. We formulate the
following problem statement: Library metrics are important to
developers when choosing libraries. Which library metrics
matter most to developers? Which metrics can we associate
to library quality? How can we extract such metrics?

Goals. Our goal is to help developers choose software libraries
by providing them with a single place where they can compare
library metrics. We believe that user568021 would have been able
to more easily choose a library if she had a resource similar to that
shown in Figure 1. In the process of creating this resource, we will
determine the metrics that can be used to assess library quality.

RelatedWork. Theworkmost related to ours is that by Uddin et al.
[15], who created a website that provides API summaries based on
aspects such as documentation and performance, mined from Stack
Overflow discussions. As opposed to focusing on a single source
of text-based information and focusing on opinions, our work pro-
poses extracting quantifiable metrics from different sources such as

software repositories, issue tracking systems, and Q&A websites.
Using a combination of various information sources allows us to
create a larger set of metrics that span different perspectives.

Hora et al. [3] and [8, 9] used popularity and migration data, to
rank APIs and provide recommendations to developers respectively.
Unlike the work by these authors, which compares libraries through
a limited set of metrics, our work consists of using several metrics
associated with different aspects of a library.

There has also been related research that focused on extracting
metrics from software projects with purposes other than providing
help in library selection [7, 10, 12, 14, 16]. We mention such related
work in Section 3.

3 METRICS
We now present software metrics we believe are relevant for library
client developers. Several of these metrics were extracted from the
literature, even if originally proposed for different purposes.

Popularity. Library popularity represents the number of its client
projects. The more projects using a library, the more popular it
is. Related research has focused on mining software repositories
to obtain popularity information of API elements, such as classes
[3, 9]. In our work, we are interested in obtaining popularity at the
granularity level of the whole library; that is, the number of client
projects using any of the library’s APIs. We believe this is a relevant
metric since it informs interested users about which libraries the
majority of developers are using in their projects.

Release Frequency. We refer to Release Frequency as the average
time difference between two consecutive releases of the same li-
brary. In related work, Khomh et al. [6] investigated the relation
between shorter release cycles of software and its respective quality
defined by metrics such as crash rates and post-release bugs. To cal-
culate release cycles, the authors extracted the starting date of the
development of Firefox versions and its release date from Mozilla
release notes, and computed the difference between these two dates.
We are interested in how often a library has new releases, since
client developers may want to know if a library receives constant
or infrequent updates before committing to use it; such updates
usually contain new features or bug fixes.

Issue Response And Closing Times. Issue Response Time indicates
the average time that it takes to get a response back when a bug
report is opened. On the other hand, Issue Closing Time refers to the
average time between the closing date and the creation date of an
issue report. Work by Ortu et al. [12] analyzed the relation between
sentiment, emotions, and politeness of Apache developers in their
JIRA comments with the time that it takes to fix an issue. Giger et
al. [2] used attributes such as severity, priority, and assignee from
bug reports of open-source projects to create prediction models
for bug fixing times. For our work, we care only about the aver-
ages of these two metrics. We believe that these metrics provide
information about developer and community support in terms of
estimations for both the waiting time that library users might ex-
pect in order to receive any response about a recently opened bug
report, and for the resolution time of an issue.
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Recency. This metric refers to the last time a library was updated,
either with new code added to its repository or with a new version
release. Based on our motivational example, we believe that recency
could be useful to determine if the development or maintenance of
a library remains active.

Backwards Compatibility. A library that is not backwards com-
patible with its previous versions results in compilation errors or
modified program behavior compared to code that was written
using past versions of the library. This represents problems to the
client developers as they have to modify code that used to previ-
ously work before updating the library. Xavier et al. [16] extracted
breaking changes from APIs through a diff tool that collected such
changes between two versions of a Java library. Mostafa et al. [10]
detected backwards compatibility problems in Java libraries by per-
forming regression tests on version pairs, and by inspecting bug
reports related to version upgrades.

Similar to the work by Xavier et al. [16], we plan to show the
average number of breaking changes per release for a library as
a way to measure backwards compatibility. We believe that this
metric is relevant as developers might want to avoid libraries that
often have a large number of breaking changes with each release.

Migration. Library migration occurs when a client project re-
places a library in favor of a different library in order to accomplish
a similar task. Teyton et al. [14] detected library migrations in over
8,000 Java open-source software projects. Their approach consists
of analyzing the changes (additions and removals) in the library
dependencies of different versions of a project using static analysis.
Kabinna et al. [5] studied the logging of library migrations by man-
ually analyzing JIRA issue reports containing keywords related to
migrations and the respective Git commit history of such reports.

We believe that developers may want to be aware of common
library migrations before they commit to a particular library and
invest time in using it. Accordingly, we are mainly interested in
pairwise migrations of libraries in the same domain (e.g. projects
using testng often migrate to junit). To determine this information,
we will use the migration dataset provided to us by Teyton et al.[14].
Wewill follow their samemethodology to extract information about
libraries not already included in the dataset.

Fault-proneness. Fault-proneness refers to how likely a library
might result in unexpected behavior caused by software defects.
Linares-Vazquez et al. [7] measured fault-proneness by calculating
the number of bug fixes of a library. They accomplished this by
looking at commit messages related to these fixes.

We also plan to count the number of bug fixes of a library as
a way to measure fault-proneness. This metric may provide an
estimation on how buggy a library is compared to similar ones.
To enable comparison of libraries, we will present a normalized
measure of these bug fixes.

Performance & Security. Non-functional properties such as per-
formance and security are important factors for developers looking
to incorporate libraries in their projects. Performance of a software
library refers to the efficiency of its underlying code. Libraries with
performance issues may result in unexpectedly slow execution,
inefficient behavior, or crashes caused by memory leaks. On the

other hand, libraries with security problems have code vulnerabili-
ties that users might exploit for malicious purposes. Research by
Uddin et al. [15] has measured performance and security of APIs
by mining opinions from discussion forums.

As a less subjective source of information, we plan to use bug re-
ports to reveal any performance or security problems that a library
may have. We think that developers want to be aware of libraries
with a high number of security vulnerabilities or performance is-
sues. In the future, we will consider extracting information about
additional non-functional properties from bug reports.

4 PRELIMINARY RESULTS & CHALLENGES
In this section, we report on some interesting preliminary results
from two of the metrics we explored, as well as the challenges we
have faced. For our preliminary results, we are using a set of 60 Java
libraries taken from a variety of domains such as cryptography and
testing. As selection criteria for these libraries, we require that they
are open source and have available issue tracking systems either
on Github or JIRA to allow automating the collection of certain
metrics. For our final list of subject systems, we plan to cover a
variety of domains, with several libraries per domain.

Popularity. We obtain popularity information using BOA [1],
which allows us to mine a large dataset of over 9 million Github
projects. We assume that a project uses a library in our dataset if
any of its Java files contain an import statement to any of the library
APIs. As BOA’s latest dataset dates to September 2015, we plan to
either use an updated dataset if released or implement the same
search criteria ourselves to be able to query the latest data from
all libraries. From our results, bouncycastle has the largest number
of client projects in the cryptography domain, with apache shiro
and spongycastle claiming the second and third ranks respectively.
JUnit is the most popular library in the testing domain, followed
by mockito and testng.

Migration. So far, we have used the migration dataset from the
work by Teyton et al. [14] to find migration data for the libraries
on our list. Interestingly, while our popularity results above show
that junit is the most popular testing library, the migration dataset
shows that the third most common library migration consists of
projects replacing junit with testng. This suggests that while some
developers might initially think of picking junit as their library of
choice for testing purposes, they may hesitate after reading the
migration data. This particular example shows how the combination
of different metrics can shape the final decision of a developer.

Performance and Security. Since we want to use the number of
reported security- and performance-related bugs as an objective
metric for the security and performance of a library, we need to
find a way to uniformly extract this data from the various library
repositories. This is challenging, because libraries use different
issue tracking systems. Furthermore, issue tracking systems such
as Github may optionally contain customized information such as
labels or tags for bug reports. These challenges led us to resort to
using more heuristic-based approaches, published in the literature,
to automatically identify performance and security bugs.

As learning algorithms have been successfully applied for text
classification purposes (e.g.,[4]), we initiallywrotemachine learning
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classifiers trained with a dataset of manually labeled performance
and security bug reports created by Ohira et al. [11]. We created a
supervised classifier for performance classifications trained with a
collection of 636 bug reports, half of them labeled as performance
bug reports. Similarly, we created a second classifier for security
classifications trained with 318 bug reports, half of them labeled as
security reports. For each bug report, we concatenated its summary
and description, eliminated stop words, and stemmed the remain-
ing words from the resulting text. We calculated the inverse term
frequency of the resulting text and used it as input to a classifier.
We are currently tuning our classifiers to obtain acceptable recall
and precision numbers. Recently, Pandey et al. [13] classified bug
reports using machine learning algorithms. However, their objec-
tive consisted of classifying bug reports into “true bugs” or not,
which is a more general classification goal than ours. In the context
of performance and security classifications we aim to do, we believe
that bug reports are difficult to classify as their descriptions may
contain explanations with multiple terms that are not necessarily
related to performance or security issues. Furthermore, there are
words whose interpretation depends on the domain. For example,
block is usually used to describe performance issues (e.g. block-
ing resources), but in cryptography libraries, this word is a noun
commonly found when referring to ciphers.

As an alternative to using classifiers, we are also experimenting
with a keyword-search approach. Keywords are often used as filter-
ing criteria in bug reports or messages in version control systems to
detect information of interest [7, 10]. By analyzing the summaries
and descriptions of the performance and security bug reports found
in the Ohira et al.’s dataset [11], we have created a keyword list that
we believe can describe performance or security problems indepen-
dent of the library domain. While this is still work in progress, we
have noticed fewer bug reports incorrectly labeled as performance
or security issues using this approach.

5 CONCLUSIONS AND FUTUREWORK
Summary. With the abundance of software libraries offering

similar functionality, it is often not clear to developers which li-
brary best suits their needs. In this work, we introduced the idea
of using metrics extracted from various information sources, such
as revision history and bug reports, as a means of providing deci-
sion support to developers through useful comparisons. We believe
that having one website that developers can go to and see a clear
metric-based comparison of libraries, such as that shown in Figure 1
can help them choose the right library. We have already discussed
several metrics we derived from the literature, often ones not used
in the context of comparing libraries. We provided some prelimi-
nary results, and described the challenges faced due to comparing
libraries coming from different domains and being developed under
varying conventions and software processes.

Next steps. Our main next step is to collect the remaining metrics,
while finding the right assumptions and heuristics to provide a
fair comparison of varying libraries from different domains. Once
this is done, we will launch our website that summarizes all this
information in a way that is easy for developers to navigate through.
We will also use the website as a means to survey developers on
which metrics they find useful and why, as well as ask them to

rate the presented libraries so we can collect the overall rating
information shown in Figure 1. Our idea is to have a single website
that developers can go to for information and at the same time
continuously provide feedback about the usefulness of the metrics.
The collected information will serve as a crowd-sourced answer to
the question of which library metrics relate to library quality and
affect developers’ choices, and can be used to dynamically update
the presented information on the website.
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