DRACA: Decision Support for Root Cause Analysis and
Change Impact Analysis for CMDBs

Sarah Nadi*, Ric Holt", Ian Davis*, and Serge Mankovskii*

University of Waterloo™, CA Labs Canada*

Abstract

As business services become increasingly depen-
dent on information technology (IT), it also be-
comes increasingly important to maximize the
decision support for managing IT. Configuration
Management Data Bases (CMDBs) store funda-
mental information about IT systems, such as the
system’s hardware, software and services. This
information can help provide decision support for
root cause analysis and change impact analysis.
We have worked with our industrial research part-
ner, CA, and with CA customers to identify chal-
lenges to the use of CMDBs to semi-automatically
solve these problems. In this paper we propose a
framework called DRACA (Decision Support for
Root Cause Analysis and Change Impact Analy-
sis). This framework mines key facts from the
CMDB and in a sequence of three steps combines
these facts with incident reports, change reports
and expert knowledge, along with temporal infor-
mation, to construct a probabilistic causality graph.
Root causes are predicted and ranked by probabilis-
tically tracing causality edges backwards from in-
cidents to likely causes. Conversely, change im-
pacts can be predicted and ranked by tracing from
a proposed change forward along causality edges
to locate likely undesirable impacts.

Copyright (©) 2009 Sarah Nadi, Ric Holt, Ian Davis, and CA
Labs Canada. Permission to copy is hereby granted provided the
original copyright notice is reproduced in copies made.

1 Introduction

Many organizations today commonly rely on an
underlying Information Technology (IT) system for
their day-to-day operations and to deliver services
to their customers. As organizations’ functional-
ities become dependent on the operation of the
underlying IT infrastructure, the management of
that IT infrastructure becomes more crucial. Con-
figuration Management Databases (CMDBs) have
emerged to help in managing these systems.

A CMDB is used to store information about the
various critical components in a system including
hardware, software and services provided by the
company (see Figure 3). It records information
about these items, their change history, their inci-
dent history, as well as the relationships between
them. Each item stored in the CMDB is referred
to as a Configuration Item (CI). The data in the
CMDB can be represented as a graph where each
CI is a node and relationships between Cls are
edges. Thus, the CMDB serves as the repository
for important information about a system which
can be used in decision making processes such
as root cause analysis and change impact analy-
sis [9]. CMDBs have been adopted by organiza-
tions as they realize the need to reduce financial
losses caused by problems in their IT systems. CA
is one vendor of the CMDB [1].

We have been investigating CMDBs from the
perspective of CA CMDB experts, as well as from
the perspective of three of CA customers who have
been using CMDBs. From our discussions, we
identified key usages of the CMDB as well as miss-



CMDE Cls &
Relationships

Current Incident
Report

Relationship
Mapping Scheme

Calendar
Information

Incident Reports,
Change Reports &
Expert Knowledge

Change History

Root Cause
Matrix

N

Step 1

Current Root
Cause Matrix

™

Step 2

Figure 1: DRACA Framework

Current
Weighted Root
Cause Matrix

N

Step 3

ing features from the customers’ perspective.

All our interviewees agreed that root cause anal-
ysis and change impact analysis are important pro-
cesses in their respective organizations. Although
the CMDB provides a visualization of the system
which allows IT personnel to understand which CIs
are related to the CI having an incident, it was
agreed that having semi-automated root cause anal-
ysis which provides a list of the CIs to check would
be valuable. Accurate change impact analysis was
also considered valuable because a change that is
not thoroughly studied before its implementation
can lead to costly outages.

Another interesting point that came up in our dis-
cussions is that of temporal constraints on the rela-
tionships in an IT system. That is, some relation-
ships only exist at certain times. These are com-
monly scheduled events such as build processes
or backup processes that only occur at specified
times in the calendar of a system. The fact that
these relationships do not exist at all times should
be taken into consideration while performing both
root cause analysis and change impact analysis.

Based on these field studies, we developed
the DRACA framework that addresses concerns
and problems CMDB users face. We present
DRACA as a decision support framework for semi-
automated root cause analysis and change impact
analysis. This paper focuses mainly on root cause
analysis and only briefly discusses change impact
analysis. More details on change impact analysis
will be provided in our future work.

DRACA consists of three steps that are shown in
Figure 1. Step 1 produces a root cause matrix based
on the CIs and their relationships in the CMDB and
a defined relationship mapping scheme. The proba-
bilities used in this matrix are mined from incident
reports, change reports and expert knowledge. Step
2 examines the calendar information of the system
and correlates it with the time of the current inci-
dent to produce a root cause matrix that matches
this time. Step 3 considers the change history of
CIs to weigh each one according to its last time of
change. Changes closer to the time of the incident
will get higher weights. This step produces the cur-
rent weighted root cause matrix which shows the
probability of each CI being a root cause of the
current incident. Based on these probabilities, a
ranked list of suspect CIs can be produced.

The rest of this paper is organized as follows:
section 2 defines terminology used in this paper.
Section 3 provides background information. Sec-
tion 4 presents the DRACA framework in details,
explaining each of its three steps. Section 5 dis-
cusses challenges involved in root cause analysis.
Section 6 presents related work. Section 7 suggests
ideas on how this work could progress. Section 8
concludes this paper.



Figure 2: Faults, Failures and Incidents

2 Terminology: Faults, Failures
and Incidents

The terminology used in this paper follows
the standards of the IT Infrastructure Library
(ITIL) [8]. A fault is a design flaw or malfunc-
tion that causes a failure of one or more Cls or IT
Services. A failure, generally caused by a fault,
is the loss of ability to operate to specification, or
to deliver the required output. A failure may cas-
cade to cause more failures in other CIs. A failure,
or a failure cascade, may eventually cause an inci-
dent. An incident is an event that is not part of the
standard operation of a service and that causes, or
may cause, an interruption to, or a reduction in, the
quality of that service. An incident is externally
observable and is usually recorded in an incident
report. Figure 2 illustrates these definitions.

Accordingly, a root cause is the underlying origi-
nal fault leading to a particular incident. Root cause
analysis tries to map an incident to its underlying
fault. A change is the addition, modification, or re-
moval of anything that could have an effect on IT
services. A poorly planned change may lead to a
fault in the system. Change impact analysis tries
to predict if a change will cause a fault which may
lead to an incident.

For example, the inability to view a certain web
page is an incident. A failure associated with this
incident may be the inability to access the web
server hosting the web page. The root cause of the
problem may be that someone changed the settings
in the Domain Name Server (DNS), and thus the
web server is no longer reachable by that name.

3 Background Information

3.1 CMDBs

ITIL [9] is a set of standards concerned with pro-
viding best practices for business effectiveness and
efficiency in the use of information systems. ITIL
defines configuration management as “the process
of identifying and defining configuration items in a

system, recording and reporting the status of con-
figuration items and requests for change, and veri-
fying the completeness and correctness of configu-
ration items”. A configuration item (CI) is a com-
ponent of an IT infrastructure which is put under
the control of the configuration management pro-
cess. The goal of configuration management, apart
from accounting for all IT assets and their config-
urations, is to provide decision support for change
management, incident management, problem man-
agement, and release management [9]. A CMDB
can either be a unified or federated database [6].
This means that internally, it can be a single
database or a collection of databases which appear
to the user collectively as one database through a
unified interface.

A CMDB, usually, provides visualization capa-
bilities to view the different CIs in the system and
the relationship between them. Figure 3 shows an
example CMDB to illustrate the concepts of Cls
and relationships. We will use this small example
throughout the paper to apply the concepts in our
framework. The different CIs in the graph have
been numbered in order to simplify reference to
them in the rest of the paper.

3.2 Causality Graph

A causality graph, as its name indicates, is a graph
that records the cause and effect relations among
different components of a system. The graph con-
sists of nodes (for the components), and edges (for
the relations). A causality edge from x to y shows
that a problem in x could cause a problem in y.
Thus, a path on this graph shows a cause-effect
chain. Causality graphs should have some way of
modeling the cause and effect strength of the rela-
tionships, usually through probabilities. We attach
probabilities to the edges of the graph to accom-
plish that. Figure 4 shows an example causality
graph that is mapped from the CMDB in Figure 3.

For example, in Figure 4 the probability on the
edge from node 1 to node 2, K15 = 0.4 shows that
if there is a fault or failure in node 1, there is a 40%
chance that it will cause a failure in node 2. We as-



UsSes:

connects fo

(1) Applicaljon 1

hosts

(3) Apache Web Server

{(4) Oracle 10g

(5) Backup Process

Figure 3: Example CMDB

sume that the propagation of errors along a node’s
outgoing edges are independent events, and are not
mutually exclusive. This means that an error in
one node can simultaneously propagate along more
than one edge that leaves from that node. Accord-
ingly, the probabilities on the edges coming out of
a node do not have to add up to 1.0. For exam-
ple, probabilities on the edges propagating out from
node 4 (0.6 and 0.9) add up to 1.5, and not to 1.0.

4 DRACA: A Decision Support
Framework for Root Cause
Analysis and Impact Analysis

As explained in the introduction, in order to pro-
duce a ranking for suspect root causes of an inci-
dent, many factors must be taken into considera-
tion. DRACA goes through three steps to accom-
plish this (see Figure 1). Step 1 produces the root
cause matrix which maps any CI to its possible root
causes (section 4.1). Once the root cause matrix is
produced from step 1, step 2 checks the time of
the incident and includes the system’s calendar to
produce a root cause matrix that corresponds to the
time the incident was reported (section 4.2). Fi-
nally, step 3 considers the changes and events that
occurred before the incident to weigh the Cls ac-
cording to their time of change (section 4.3). After
this step, we will have a final root cause matrix that
effectively gives us a ranking of the suspect root
causes of the current incident. This completes our

overview of the three step DRACA framework; we
will now discuss these steps in detail.

4.1 Step 1: Producing the Root Cause
Matrix

The root cause matrix is produced in three sub-
steps. Step la produces the causality graph by map-
ping the CIs in the CMDB into nodes, and map-
ping the CMDB relationships into causality edges
according to a defined mapping scheme. Step 1b
attaches probabilities to the causality edges by min-
ing incident reports, change reports, and expert
knowledge. Step lc stores these probabilities in
a causality matrix K and calculates the probabil-
ity that each CI could be the root cause of another
CI. This probability will be stored in the root cause
matrix R.

Step 1a: Mapping CMDB Relationships into
Causality Edges

The data available in a CMDB records how the
different CIs interact together as shown in Fig-
ure 3. Based on these relationship meanings, we
develop a mapping into causality edges. For ex-
ample, in Figure 3, Application 2 connects to the
Oracle database, so if the Oracle database has any
problem, Application 2 will malfunction because it
can no longer access the database. In other words,
a problem in Oracle can cause a problem in Ap-
plication 2. In a causality graph, this would map
to an edge going from Oracle (node 4) to Applica-



tion 2 (node 2) as shown in Figure 4. To achieve
this, we develop a mapping scheme to convert the
different relationships in the CMDB into causality
relationships. Table 1 shows the scheme we use to
map the CMDB in Figure 3 to the causality graph
in Figure 4.

CMDB Relationship \ Causality Mapping

A hosts B A causes B
A connects to B B causes A
A backs up B A causes B
A uses B B causes A

Table 1: Relation Mapping Scheme

In a real system, there would be more relation-
ships defined in a CMDB. Additionally, as time
passes, CMDB managers may add new types of re-
lationships to fit their needs. In such a case, they
should enhance the mapping scheme to include the
new relationships.

Step 1b: Estimating the Probabilities

Given the causality edges calculated in step 1a, step
1b estimates the probabilities on the edges. Esti-
mating the strength of the causality edges, which
we represent as probabilities, is one of the most
challenging parts of root cause analysis. This is
done by mining the incident reports that were pre-
pared for previous incidents. The reports will con-
tain information about the root cause of the inci-
dent, and how it was solved. Additionally, some in-
cident reports may contain information about other
related failures or symptoms which occurred at the
same time of this incident. This is useful in esti-
mating the probability on the edges. Simple count-
ing techniques such as how many times CI x had
a reported incident (count(x)) and how many times
CI y was the cause of this incident (count(y — x))
can give us an estimate for the strength of the re-
lation between y and x in the form of count(y —
x)/count(x).

Change reports are another source of relevant
information. When a change needs to be imple-
mented, related CIs that need to be checked and
other changes that need to implemented as a result
are usually documented. The same counting tech-
nique can be used to estimate the strength of the re-
lationship between two CIs. If two CIs commonly
change together then there is a greater chance that

fi=04 £=08

£=0.1

———causes—p

Figure 4: Example Causality Graph

these CIs are related and that a fault in one can
cause a failure in the other.

Finally, expert knowledge is an important source
of information. If the above information is not
well documented, experts who have been working
with the system for years could provide it as they
have extensive knowledge about the things that go
wrong, and what are their most likely root causes.
We use these sources of information to estimate
the probabilities shown in Figure 4. Ideally, inci-
dent reports and change reports would be used to
estimate the probabilities, and experts would ver-
ify this information or provide additional informa-
tion when proper documentation is missing. How-
ever, the amount of reliance on expert knowledge
greatly depends on the quality of historical infor-
mation present.

Step 1c: Calculating Root Cause

Steps la and 1b produce the causality graph that
we will now use to produce the root cause matrix.
In order to do this, we store this causality graph
in a matrix K. Given a causality graph with n
nodes, the edges in the graph which represent a
direct causal relation between two nodes will be
stored in the n by n matrix K. The probability that
CI 7 might cause a problem in CI j is found in the
entry K;;. The following causality matrix K stores
the probabilities shown in the graph in Figure 4.



0.0 04 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
K=1] 05 02 00 00 00
06 09 00 00 0.0
0.0 0.0 0.0 02 0.0

Representing this information in a matrix pro-
vides a convenient way of calculating indirect
cause propagation. An entry K;; is the probability
of an error propagating from ¢ to j through a di-
rect edge (i.e a path of length one). Now, consider
K2, which is the square of K, i.e., K multiplied
by K. Entry Kfj is the probability of propagating
from ¢ to j through any path of length two. In order
to calculate this probability, we must consider all
paths of length two from ¢ to j and assume we take
any, some or all of them. This probability is calcu-
lated by taking taking the “or” of all possible two
step paths from ¢ to j according to the probability
rule: P(AUB) = P(A)+ P(B) — P(A)x P(B)
where A and B are independent events. We use this
probability rule when multiplying the matrices and
when adding them to compute the transitive closure
matrix.

Let us consider the graph in Figure 4, and con-
sider the ways a problem in node 5 can propagate
to affect node 2. To start with, K50 = 0 since there
is no path of length one from node 5 to 2. Now,
to calculate K2,, we need to consider going from
node 5 to node 2 in any path of length two. Only
one such path exists in our graph: 5 — 4 — 2.
Therefore, K2, is calculated as follows:

K2, = 0.2x%09
= 0.18

Similarly, K3, is calculated through the path
5—=4—1— 2 as follows:

K3, = 02%06%0.4
0.048

When we add the probabilities from all paths
leading from 7 to j in one step (k;), two steps
(Kfj) ... 00 steps (K7¥), we will get the overall
probability that an error or failure in ¢ could prop-
agate to j through a path of any length. In other
words, we are computing the transitive closure of
matrix K which we shall call 7":

Ty =>_Ki; @
=1

T, gives the probability that an error or failure in
1 causes a failure in j through a path of any length.
Following equation 1, the matrix 7" below, rounded
to two decimal places, is the transitive closure of
the given matrix K.

00 04 00 0.0 00
0.0 0.0 00 0.0 0.0
T = 05 036 00 00 0.0
06 092 00 00 0.0
0.12 0.22 0.0 0.2 0.0

An entry T;; shows the probability that a failure
in ¢ could propagate to j. For example, 752 = 0.92
means that if node 5 has a failure, there is a 92%
chance that this failure will propagate to node 2.

We define the fault proneness f; of a node i as
the probability that 7 has a fault of its own accord.
For example, f; = 0.4 means that there is a 40%
chance that node 1 will initiate a fault. Using f;
and T;;, we can compute I7;;, the probability that
node 7 could be the root cause of a failure in node
J, as follows:

Ri; = fiTy; )

This calculates the probability that node ¢ had a
fault that propagated, directly or indirectly to cause
a failure in j. Therefore, the term R;; gives us the
probability that a failure in j has ¢ as its root cause.
For illustration, assume f; is the following vector:

0.4
0.8
f=1 o1
0.3
0.2

The fault proneness of each node is also shown
on the causality graph in Figure 4. According to
Equation 2, R would have the following probabili-
ties rounded to two decimal places:

0.0 016 00 0.0 0.0
0.0 0.0 00 0.0 0.0
R=1| 005 004 00 00 0.0
0.18 0.28 0.0 0.0 0.0
0.02 0.04 0.0 0.04 0.0



From the above matrix, R4o = 0.28 means there
is a 28% chance that node 4 is the root cause of an
incident in node 2.

4.2 Step 2: Producing the Current
Root Cause Matrix

In step 1, we produced a root cause matrix based
on the relations in the CMDB and other informa-
tion such as incident reports. However, one such
static view of the system may not always yield ac-
curate results if certain aspects change from one
point in time to another. Therefore, we take the cal-
endar information of the system into consideration
while performing root cause analysis. For example,
if a backup process runs every night at 8:00 pm to
backup a database server, then the relationship be-
tween the backup process and the database server
only exists at that time. Such information should
be considered to produce more accurate analysis.

Depending on the time of the incident being ex-
amined, we will adjust our root cause matrix ac-
cording to the calendar information available. Us-
ing the example in Figure 4, if the backup process
(node 5) only takes place on Wednesdays from 7:00
- 8:00 pm, then the edge from node 5 to node 4
will only exist at that time. Accordingly, if we re-
ceive an incident on Sunday at 2:00 pm, we look
at our calendar information and check if there are
any causality edges we can exclude to improve the
analysis. In this case, we can exclude the edge from
node 5 to node 4 since this relationship does not ex-
ist on Sunday at 2:00 pm.

After examining the calendar information, we
exclude irrelevant edges according to the time of
the incident which means that our causality matrix
K will change. We then calculate a new current
root cause matrix according to the new edges being
considered. To calculate the current root cause ma-
trix, we follow the calculations done in step lc. If
no calendar information is available for the system,
then we simply use the root cause matrix calculated
in step 1 as our main matrix for all times. In prac-
tice, we can skip generating the root cause matrix
in step 1lc, and simply generate it as needed in step
2.

Weighting Scale

Weight

0 10 € EY 40 s & 7 = e 100

Time Difference between Reported Incident and Changes/Events (hrs)

Figure 5: Weighting Scale

4.3 Step 3: Producing the Current
Weighted Root Cause Matrix

After calculating the current root cause matrix in
step 2 by considering the time of the incident and
the available calendar information, we still need to
consider the events and changes that actually hap-
pened in the system before the incident. This fol-
lows from the idea that if X causes some incident
in Y, X has to occur before Y. Additionally, the
fault or failure in X should occur at a time that is
reasonably close to the time of the incident in Y.
For example, it is more likely that a change or event
that happened 2 hours before the incident occurred
could be its root cause versus some other event that
happened two days ago.

To do this, we compare the time of the incident
and the time of the last change that occurred to the
other CIs such that a higher weighting is given to
CIs that had events or changes which took place
closer to the time of the incident. A weighting
scheme is needed to accomplish this. The choice
of the weighting scheme does not affect the rest of
the calculations we do. The main idea is to give
decreasing weights to changes or events as they oc-
cur further back from the time of the incident. We
choose to use an exponentially decaying weighting
scheme from 1.0 to 0.0. The rate of decay, however,
would depend on the nature of the system. The ex-
ponential weighting scheme we use in this example
is shown in Figure 5.

According to when the last time a CI changed or
an event associated with it occurred, its row in the
root cause matrix, R, would be multiplied by its
temporal weight. Accordingly, CIs which have not
changed in a long time will have a very low weight



CI | Last Change
1 January 1, 2009 10:00 am | 0.00001
3 May 4, 2009 10:00 pm 0.94
4 April 30, 2009 2:00 pm 0.09

Weight

Table 2: Temporal Weights

factor (almost 0) which will greatly decrease their
probability to be a suspect root cause of the current
incident.

Assume we have received an incident for CI 2
on Monday May 4, 2009 at 2:00 pm. Table 2
shows the different change times of the CIs, and
their temporal weight according to the weighting
scale shown in Figure 5. For example, since the
last change in CI 4 happened on April 30, 2009 at
2 pm (i.e., 96 hours from the time of the current
incident), its weight will be 0.09 according to the
graph in Figure 5.

We then multiply the temporal weight of each
CI by its corresponding row in the root cause ma-
trix R to get the new probabilities. Accordingly,
the probabilities that were shown in R in step lc
(See page 6) will now change to those in Ryeighted-
These are shown below, rounded to three decimal
places. Note that since the incident occurred on
a Monday, the edge from node 5 to node 4 is not
considered as this edge only exists on Wednesdays
from 7:00 - 8:00 pm as shown in step 2. That is
why all of row 5 is zeros in Rycighted, and we do
not need to worry about the changes done to CI 5.

0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0
0.047 0.034 0.0 0.0 0.0
0.016 0.025 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0

Rweighted =

Since the incident is in CI 2, we look at column 2
in the root cause matrix to determine the ranking of
the suspect CIs. Without temporal information, our
most likely suspect for the incident in CI 2 was CI 4
(with a 28% chance) followed by CI 1 (with a 16%
chance) as shown in matrix R from step Ic (See
page 6). With temporal information, our primary
suspect now becomes CI 3 (with a 3.4% chance)
followed by CI 4 (with a 2.5% chance) as shown
in matrix Ryeighteq above. This makes sense since
CI 3 had a change very close to the reported time
of the incident.

5 Discussion

In this paper, we have proposed DRACA as a
framework for root cause analysis and change im-
pact analysis. We have not discussed change im-
pact analysis in this paper, but the main informa-
tion needed to perform impact analysis is present in
our framework. As with any model or framework,
the accuracy of the produced results is a function
of the quality of the data available. The more de-
tailed the information stored about incidents, their
root causes, and side effects, the more accurate the
estimated probabilities are, and thus the more ac-
curate the root cause analysis is. Since ITIL stan-
dards are becoming increasingly popular and are
being adopted by organizations, we believe that
more companies would adhere to these standards
and have detailed documentation of their incidents.
Additionally, as the need arises, the structure of the
reports may eventually change to include more in-
formation that will be useful to future root cause
and change impact analysis.

In order to have an effective framework, learn-
ing from the results previously done analysis is cru-
cial. When an incident is reported, and the frame-
work reports a suspected root cause, this suspect
CI should be fixed, and then the problem should be
re-evaluated to determine if it is still there or not.
Whether the problem was fixed or not, and accord-
ingly, whether the identified root cause was accu-
rate or not should be stored in the incident reports.
Every certain amount of time, the causality graph
would be updated with the new information mined
from these incident reports.

As incidents occur and get fixed, the totality
of the picture may change and the strength of the
causality edges may change accordingly. The fre-
quency with which the causality graph would be
updated would depend on the nature of the sys-
tem at hand. If the system being managed is a
highly dynamic system with many incidents occur-
ring, then a higher frequency of updating would be
needed. On the other hand, if the rate of incidents is
low, then the initial causality graph would be more
or less stable, and a lower frequency of updating
would be needed.

One of the challenges with using a causality
graph is how to deal with cycles in the causality
graph. Practically, a cycle implies that an error in a
particular CI could cause a ripple of failures which
loop around and cause another failure in the orig-



inal CI, repeatedly. This implies that the loop can
be traversed many times. Although we chose not
to address loops yet, as they are not very common
in real systems, and most work in the field has cho-
sen to ignore them, our model does, however, allow
for them. Using matrix multiplication to calculate
the transitive closure can approximate the impact
of loops.

6 Related Work

Most of the work done on root cause analysis (com-
monly referred to as fault localization) has focused
on communication networks and network related
events (e.g [5]). However, the data in the CMDB
provides much more detailed information than is
available in networks. As discussed in [3], IT sys-
tems have become service oriented and incidents
are dealt with at the service level instead of the
network level. Root cause analysis in IT systems
should, therefore, be done at a service-oriented
level and not a device-oriented level.

To do this, Hanemann [4] proposes a hybrid
rule-based/case-based reasoning approach to iden-
tify faults. Through a set of rules that map symp-
toms to root causes, the root cause of an incident is
identified by searching the set of rules for match-
ing symptoms. If no match can be found, this inci-
dent is treated on a case based approach by manu-
ally resolving it the first time it is encountered, and
then storing it to the set of available cases for fu-
ture incidents. The downside to this approach is
that it is difficult to identify all the needed rules,
and manually resolving each case might be very
costly. Our approach replaces the manual work
needed in the case-based reasoning part as it saves
time by automatically producing a list of ranked re-
sults. Additionally, identifying root causes based
on the changes and events that actually took place
in the system rather than static rules should yield
more accurate results.

Previous work on fault localization includes us-
ing Bayesian Belief Networks to model end-to-end
services in a system to identify root causes of prob-
lems [10]. The technique is based on analyzing the
symptoms in the system, and using a belief net-
work to compute the Most Probable Explanation
set. This work, however, only works on a high-
level to pinpoint the service which has the problem
according to the present symptoms, but does not

go further down to identify the problem on a lower
level. In a CMDB, however, relationships between
services and other underlying CIs are present which
makes discovering the actual root cause of a prob-
lem more accurate.

Other previous work [2] uses decision trees to
identify faults in the system. This technique works
by classifying failed and successful requests that
occurred during the faulty period and maps this in-
formation to the paths on the tree to predict the
possible sources of the error. As the authors them-
selves point out, decision trees are not very compet-
itive in terms of correct prediction. The main ad-
vantage of their technique is that they yield human
interpretable results. Causal graphs which take
temporal aspects into consideration have the poten-
tial to yield better predictability rates, and would
still provide human understandable results.

Recently, Natu and Sethi [7] proposed a tech-
nique for fault localization for wireless adhoc sys-
tems that incorporates temporal aspects in the anal-
ysis. Both our technique and theirs use a matrix
to store the probabilities tied to edges represent-
ing causal implications between problems and their
possible reasons. Natu and Sethi refer to them as
faults and symptoms. The first difference is that in
our matrix, the rows and columns are the same set
of CIs as any CI may have an incident and any CI
could be a possible root cause. We do not divide
them into separate sets of faults and symptoms.

Additionally, the issues their work is addressing
is a somehow different from ours. They are ad-
dressing wireless adhoc systems where nodes are
continuously changing. In our work, the nodes
themselves rarely change, and is thus not a big con-
cern. Our concern is, however, the change in the
edges between the nodes i.e if they exist at certain
times or not. A common concern both techniques
have, however, is the time of analysis, and thus the
best model (stored matrix) is used according to the
time of the incident.

7 Future Work

Our next step is to use simulation to test our model.
That is, we will develop a small system and store its
configuration in the CMDB. We will simulate faults
causing a failure cascade which eventually causes
an incident according to the probabilities stored in
our model. We would then use the probabilities in



our model to identify the root causes of these inci-
dents.

Additionally, it would be interesting to mix the
hybrid technique [4] described above with our
framework. Having a rule-based approach com-
bined with a case-based approach that uses our
model to automatically identify the root cause in-
stead of manually finding it could produce an im-
provement to both techniques.

We are also currently analyzing sample data
from CA’s own CMDB that is used to manage their
internal network. We are looking at the incident
and change reports stored there in order to apply
our technique. Once our technique is mature on
this sample data, we hope to test it on different data
sets.

8 Conclusion

This paper presented DRACA, a framework for
performing root cause analysis and change impact
analysis. We concentrated on root cause analysis
in this paper, but the data needed for change im-
pact analysis is also available in our framework.
We demonstrated how the data in the CMDB can
be mined to produce a causality graph, and how
this graph can be represented in a matrix. Through
manipulations on this matrix, we produced a root
cause matrix which records the probability that one
CI is the root cause of an incident in another CL
This is done through three steps: forming the ba-
sic root cause matrix from the data in the CMDB,
considering the time of the reported incident along
with the system’s calendar information to adjust the
current root cause matrix accordingly, and finally
having different weights for the different Cls ac-
cording to the last time they have changed to pro-
duce the final root cause matrix. The final root
cause matrix effectively provides a ranked list of
the suspect CIs for the current incident.

This work is unique in that it combines different
aspects of root cause analysis into one framework.
The problems we address are real world challenges
which we have extracted from many discussions
with CMDB users and CMDB experts. Working
closely with CA Labs has given us an insight into
the problems faced by CMDB users. DRACA lays
the foundation for a framework that addresses these
challenges.

Acknowledgments

This research is supported by a research grant from
CA Canada Inc. This project is also partly funded
by OCE and NSERC. We would also like to thank
our participating CA customers for their contribu-
tions.

About the Authors

Sarah Nadi, BSc., The American University in
Cairo, 2007, is currently pursuing her Master’s de-
gree at the University of Waterloo. Her research
interests include software architecture and mining
software repositories.

Richard C (Ric) Holt, PhD, Cornell University,
1971, is a Professor of Computer Science at the
University of Waterloo. He has done basic work on
deadlock theory, compilers, software architecture
and mining software repositories. He is co-author
of the Turing programming language.

Ian Davis, PhD, University of Waterloo, 1989
has been employed by the University of Waterloo
since 1994 as a project manager and research as-
sociate. Research interests include software devel-
opment, database, XML, visualization, and fact ex-
traction.

Serge Mankovskii is a Research Staff Member
with CA Labs. He has over 25 year of industry ex-
perience in operating systems, expert systems, ma-
chine learning, reasoning, telecommunication soft-
ware, enterprise job scheduling and event-based
enterprise integration.

References

[1] CA. http://www.ca.com/us/.

[2] M. Chen, A. Zheng, J. Lloyd, M. Jordan, and
E. Brewer. Failure diagnosis using decision
trees. In International Conference on Auto-
nomic Computing, 2004.

[3] A. Hanemann. Automated IT Service Fault
Diagnosis Based on Event Correlation Tech-
niques. PhD thesis, Universitat der Bun-
deswehr Munchen, 2007.

[4] A. Hanemann, M. Team, L. Center, and
G. Munich. A hybrid rule-based/case-based



(5]

(6]

reasoning approach for service fault diagno-
sis. In Advanced Information Networking and
Applications, 2006. AINA 2006. 20th Interna-
tional Conference on, volume 2, 2006.

S. Kandula, D. Katabi, and J. Vasseur. Shrink:
a tool for failure diagnosis in IP networks.
In Proceedings of the 2005 ACM SIGCOMM
workshop on Mining network data, pages
173-178. ACM New York, NY, USA, 2005.

H. Maddurt, S. Shi, R. Baker, N. Ayachi-
tula, L. Shwartz, M. Surendra, C. Corley,
M. Benantar, and S. Patel. A configuration
management database architecture in support
of IBM Service Management. IBM SYSTEMS
JOURNAL, 46(3):441, 2007.

[7]

[10]

M. Natu and A. Sethi. Using temporal cor-
relation for fault localization in dynamically
changing networks. International Journal of
Network Management, 18(4), 2008.

Office of government commerce (ogc), ed.:
Glossary of terms, definitions and acronyms
v3. IT Infrastructure Library (ITIL), 2007.

Office of government commerce (ogc), ed.:
Service support. IT Infrastructure Library
(ITIL), 2000.

M. Steinder and A. Sethi. Probabilistic fault
localization in communication systems us-
ing belief networks. Networking, IEEE/ACM
Transactions on, 12(5):809-822, 2004.



