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Abstract—To avoid unnecessary maintenance costs in large
IT systems resulting from poorly planned changes, it is essential
to manage and control changes to the system and to verify
that all items impacted by each change are updated as needed.
This paper presents a method of decision support that helps
guarantee that each change set (those items to be updated in
the change) contains all the software or hardware components
impacted by the proposed change. Today, many IT systems are
managed by a Configuration Management Database (CMDB),
which can be represented as a large graph in which the nodes
are configuration items (CIs), such as software applications
or servers, and the edges record dependencies between these
items.

In this paper we present a new approach to suggesting
change sets based on our conjecture that each new change
set is likely to be similar to instances of previous change sets.
Accordingly, if the analyst determines that CI x is in a new
change set, our method essentially searches for previous change
sets, stored in the CMDB, that contain x, and suggests that
CIs in those sets (appropriately ranked) should be considered
for inclusion in the new change set.

Our model uses support and confidence measures to estimate
how closely nodes x and y are related, based on how often they
have appeared together in past change sets. Based on these
measures, we implement a prototype that suggests likely items
to an analyst who is composing a change set. Based on a history
of three years of a particular industrial CMDB, and several
filtering techniques, the observed recall and precision values
were as high as 69.8% and 88.5% respectively.

Keywords-Data mining, change management, maintenance,
configuration management.

I. INTRODUCTION

Understanding the effect of a change in an Information
Technology (IT) system before applying it is important. For
example, if a security patch is to be installed on a server,
analysts should ensure that none of the applications hosted
by this server will be negatively impacted. In this case, the
set of entities to change, i.e. the change set, will include
not only the server, but all of the affected applications as
well. In order to successfully implement a change without
causing costly disruptions to the system, the correct change
set should be identified before the change is implemented.
Correctly planning changes in an IT system results in a more

maintainable system with fewer undetected errors. To assist
analysts in doing this, we use historic information to predict
change sets.

There has been much work done on predicting the propa-
gation of a change on the source code level through mining
software repositories such as CVS [1], [2], [3], [4]. Several
studies from the field of Mining Software Repositories have
shown that code change history is a good predictor of future
changes in the code [5], [6].

In this paper, we are concerned with software (and hard-
ware) that has already been deployed in a complete IT
system. In this situation, the software is changed by reconfig-
uring it, parameterizing it, changing the components it relies
on, etc. Such changes are tracked using a Configuration
Management Database (CMDB) which logs incidents and
change orders as well as tracks configuration items (CIs)
and the relationships between them [7]. An analyst usually
creates a Change Order to record each change to the system
and to log the changed CIs. In this work, we explore whether
history is a good predictor of future changes on a system
level. That is, if the analyst indicates that a particular CI
is going to be changed, can we use historical records to
successfully suggest other CIs that should be changed as
well?

The Runtime Automated Configuration Engineering
(RACE) project is a joint collaboration between the Uni-
versity of Waterloo and CA Labs Canada which aims to
provide IT analysts with better decision support tools. In our
previous work [8], we have presented DRACA as a Decision
support framework for Root cause Analysis and Change
impact Analysis. In that work, we presented techniques for
root cause analysis. In this work, we present decision support
for change impact analysis. Change impact analysis involves
identifying entities (in this case CIs) in a system that are
likely to be impacted by a proposed change.

Given an initial CI to change, analysts commonly follow
the relationship edges stored in the CMDB to determine a
list of other CIs that may be impacted. We have been in
contact with CA’s Global Information Systems (GIS) team
that is responsible for managing all of CA’s IT system.



We interviewed members of the GIS team, as well as CA
customers, and most of them agreed that they need more
details about the impact of the change on each CI in the
produced list. To do this, DRACA acts as an oracle which
when provided a CI that is to be changed, proceeds to
suggest other CIs to change as well. DRACA ranks the
list of suggested CIs to provide the analyst an indication
of whether she should include a suggested CI in her change
set. We tested our approach on data provided by CA, and
obtained promising results in terms of recall and precision
through applying various filtering techniques.

The rest of this paper is organized as follows: Section II
gives an overview of a CMDB which is the main repository
used in this work. Section III explains the change impact
analysis process provided by DRACA. Section IV explains
how DRACA’s performance will be evaluated. Section V
explains the underlying model DRACA uses for suggesting
CIs. Section VI presents the empirical work performed to
evaluate DRACA. This section explains the structure of the
data used, the experiment setup, as well as the results ob-
tained from the base case of our experiment and those from
the various filtering techniques we used. Section VII presents
related work in the field, and Section VIII discusses possible
future directions for this work. Section IX concludes this
paper.

II. CONFIGURATION MANAGEMENT DATABASE (CMDB)

We focus on systems that generally follow ITIL [7] which
is a set of standards concerned with providing best practices
for business effectiveness and efficiency in the use of in-
formation systems. ITIL defines configuration management
as “the process of identifying and defining configuration
items in a system, recording and reporting the status of
configuration items and requests for change, and verifying
the completeness and correctness of configuration items”.

A configuration item (CI) is a component of an IT infras-
tructure, such as a server or a software application, which
is put under the control of the configuration management
process. CIs and the relationships between them are stored in
the Configuration Management Database (CMDB). The goal
of configuration management, apart from accounting for all
IT assets and their configuration, is to provide decision sup-
port for change management, incident management, problem
management, and release management [7]. Accordingly,
apart from containing information about CI configuration
in the system and their interrelations, the CMDB also keeps
track of CI history. This is through storing past incident
reports, problem reports, and change orders of CIs. When
an analyst views the details of any CI, she can see all the
incident, problem, and change reports this CI was involved
in.

Change management in ITIL is defined as “the process
of controlling changes to the infrastructure or any aspect of
services, in a controlled manner, enabling approved changes

Figure 1. Flowchart of DRACA’s change impact analysis process

with minimal disruption”. ITIL identifies the need to identify
other CIs that will be impacted whenever a change to a
specific CI is proposed. In this work, we aim to support
analysts as they perform change management.

III. DRACA’S CHANGE IMPACT ANALYSIS PROCESS

The change impact analysis process that we propose
is a collaborative interaction between the analyst and the
DRACA tool as illustrated in Figure 1. Figure 2 shows the
Graphical User Interface (GUI) for our prototype supporting
this process.

This process consists of five main steps as shown in both
figures. In step 1, the analyst provides DRACA with the
CI she wants to change (the initial CI). In our prototype,
she enters the name into the ‘CI Name’ text box. In step 2,
the analyst clicks the ‘Suggest CIs’ button which triggers
DRACA to check its model to search for CIs that have
previously changed with the initial CI.

If DRACA has no suggestions to make to the analyst (e.g.
the indicated CI has not previously changed with any other
CIs in DRACA’s stored model), then this ends the process
of interaction between DRACA and the analyst. However,
if DRACA has suggestions to make, it moves to step 3 and
provides the analyst with a list of ranked CIs. These CIs
are displayed in the ‘Suggested CIs (Ranked)’ table, and
are color coded according to their ranking (red, blue, and
green).



Figure 2. The DRACA prototype tool suggests a list of ranked CIs to the analyst, and allows her to ask for more suggestions based on the CIs she accepts

The analyst, in step 4, then chooses the CIs to include
in her change set. The information provided by DRACA
in terms of support and confidence guides the analyst to
choose the CIs to accept. The accepted CIs (along with the
initial CI the analyst provided) form the change set that is
being constructed. To accept any of the suggested CIs in
Figure 2, the analyst highlights the CI(s) she wants to accept,
and clicks on ‘Accept’. This moves the selected CIs to the
‘Accepted CIs’ table.

At this point, in step 5, the analyst may ask DRACA to
make more suggestions based on the new CIs she added to
the change set through the ‘Suggest More’ button, or she
may choose to end the interaction with DRACA through
the ‘Done’ button. If she asks DRACA for more suggestions,
then for each newly accepted CI, DRACA searches for other
CIs that have changed with it and suggests them to the
analyst. DRACA will not, however, suggest any CIs that
have been suggested before. This process continues until
either DRACA has no more suggestions to make or the
analyst decides not to ask DRACA for more suggestions,
and clicks ‘Done’. Once this process is over, the analyst’s
interaction with DRACA ends.

If there are CIs that the analyst wants to add to the change
set, and which DRACA has missed, the analyst is free to
add these CIs to the change set. If this situation occurs,
then DRACA was not able to suggest all CIs relevant to

the analyst. However, if the analyst does not add any extra
CIs after its interaction with DRACA is over, then DRACA
found all the relevant CIs. After the analyst chooses the
change set, she finalizes the change order which will be
stored in the CMDB repository.

IV. MEASURING THE PERFORMANCE OF DRACA
We need a way to evaluate DRACA’s suggested CIs.

Ideally, DRACA would suggest all the CIs in the change
set without making any errors, but of course this does not
often happen in practice. The recall and precision measures
from the information retrieval field are appropriate for this
type of evaluation. Recall measures the proportion of correct
CIs retrieved by the system, while precision measures the
proportion of suggested CIs that are correct [9].

We define the Predicted Set (P) as the set of all CIs
DRACA suggests through the full the iteration process (see
Figure 1). We define the Occurred Set (O) as the CIs
remaining in the change set after excluding the Initial CI
provided by the analyst (i.e Change Set - Initial CI). The
intersection of the predicted set and the occurred set, called
PO, is the common CIs in both sets. For each constructed
change set, we then calculate the recall and precision values
for the predictions according to the following definitions [1]:

Recall =
|PO|
|O|

(1)



Precision =
|PO|
|P |

(2)

If no CIs are predicted (i.e., P and thus PO are empty),
precision is defined as 1 since there cannot exist any
incorrect predictions in an empty set. On the other hand,
if the size of the change set is 1, and thus the size of the
occurred set is 0, recall is defined as 1 since there are no
CIs to predict [1].

In order to have a single measure that indicates the
effectiveness of our predictions, we use the F-measure
which is based on van Rijsbergen’s effectiveness measure
which combines recall and precision [9]. The F-measure
is calculated according to Equation 3 which gives equal
weighting to recall and precision. The ideal F-measure is
1 where both recall and precision are 1.

F = 2 ∗ precision ∗ recall
precision+ recall

(3)

V. MODEL USED

In order to keep track of which CIs changed together
in the past, we need a model that gives an indication of
which CIs change together frequently versus those which
do not. To accomplish this, we use two measures, support
and confidence, from Zimmermann et al. [3].

Given a historical sequence of change sets, we start by
counting the number of times each pair of entities (CIs in
our case) appeared in a change order. For example, Figure 3
records that CIs B and C have occurred together in 4 change
sets. We call this count the support between these two CIs.
The support is drawn as an undirected edge between the
two CIs. These counts are stored in the support matrix
S as shown below. This example support matrix below
corresponds to Figure 3.

S =


A B C

A 5 5 0
B 5 10 4
C 0 4 8


An entry Sij shows how many times i and j changed

together during the time period we are mining. For example,
since A and B changed 5 times together, entry SAB = 5.
Noste that Sii is the number of times i changed with itself
which is simply the count of how many times i changed in
total. Note that the support matrix is symmetric since the
number of times A and B changed together is the same as
the number of times B and A changed together.

The support matrix S records the actual counts of co-
changes. It is also useful to compute relative counts that take
the total number of times each of these CIs have changed
into consideration. For example, in Figure 3, A and B have
changed 5 times together while the total number of times A

Figure 3. Tracking changes between CIs

and B have each changed are 5 and 10 respectively. This
means that every time A changed, B changed with it as
well while every time B changed, A changed with it only
half the time. We call this relative count the confidence and
calculate it as follows [3]:

Cij =
Sij

Sii
(4)

For example, CBA is equal to SBA
SBB

= 5
10 = 0.5, which

means that 50% of the time that B appeared in a change
set, A also appeared in the same change set. The confidence
matrix C for the example in Figure 3 is given below. Unlike
the support matrix, the confidence matrix is not necessarily
symmetric.

C =


A B C

A 1.0 1.0 0
B 0.5 1.0 0.4
C 0 0.5 1.0


VI. EMPIRICAL VALIDATION

To provide empirical results, we simulated the process
described in Section III on a set of industrial data. We use
the model presented in Section V to make the suggestions.
We propose an initial procedure, our base case, and then
propose three improved procedures which ideally filter out
items mistakenly suggested by the base case. To evaluate
these procedures, we test them with data from three year’s
use of a CMDB at CA. This section describes the data used,
the experiment setup, and the results obtained.

A. Description of the Data

Format of the Change Order Reports: In the CMDB, a
Change Order has several fields including the requester, the
assignee, the start date of the change, the description and
the change set field (called the ‘Configuration items’ fields).
Of the fields in a change order, we use only the change
set field. The advantage of only using this one field is that
change sets are easy to extract and easy to understand and,
more importantly, as we will show, they may be useful as
the basis for predicting future change sets.



Size of the System: The set of industrial data we used
to evaluate our technique was provided by CA’s Global
Information Systems (GIS) team. Internally, CA uses its
own CMDB product to manage its internal network and
the services it provides to internal or external customers.
The GIS team manages the all of CA’s internal IT system
worldwide. Table I shows the number of change orders
containing data in the ‘Configuration Items’ field per year in
the GIS CMDB during the three year period, January 2006
– December 2008, examined in this work.

Year Number of Change Orders
2006 8,307
2007 9,784
2008 9,214

Average Per Month 758
Total Number of Change Orders Studied 27,305

Table I
NUMBER OF CHANGE ORDERS PER YEAR IN THE GIS SYSTEM

From the three years of data, we determined the following
facts about changes in the system. The average size of a
change set is 4 CIs. At the end of 2008, there was a total of
37,906 CIs in the system. However, over the examined three
year period, only 7,999 CIs were involved in the change
reports (about 21% of the total number of CIs). The fact
that not all the CIs have changes associated with them is not
surprising since the CMDB keeps track of a large variety of
CI types. These types range from software applications to
hardware such as printers or LCD screens whose changes
would not necessarily be logged in the CMDB.

B. Experiment Setup

To apply the change impact analysis process described
in Section III, we mined the change orders stored in the
CMDB repository to extract the change sets. We use reports
from three consecutive years: 2006, 2007 and 2008. We
start by constructing the support and confidence matrices
from January 2006, and use this knowledge to predict the
change sets in February 2006 (i.e. learning period = Jan
2006 and testing period = Feb 2006). We then add the data
from February 2006 to our matrices, and attempt to predict
the change sets in March 2006 (i.e. learning period = Jan –
Feb 2006 and testing period = March 2006), and so on until
December 2008.

For each learning period, we calculate the support ma-
trix, and then calculate the confidence matrix according to
Equation 4. To calculate the support matrix, S, we look at
each change order in the specified learning date range, and
increment the count of each CI that occurred in this change
order as well as incrementing the count corresponding to
each pair of CIs in the change order. That is, if a change
order has CIs A and B, then SAA, SBB , SAB , and SBA are
all incremented.

For each testing period, the aim is to use the model
(support and confidence matrices) constructed from the data
in the learning period to reproduce the existing change
sets given an initial CI in the change set. This technique
is commonly used in evaluating research ideas (e.g., [1]
and [2]), when deploying the tool in a production system
is not feasible. For each change in the testing period, we
choose one of the CIs in the change set (Initial CI), and
then suggest which other CIs should be changed along with
it. To be able to compare results from the different filters we
use, we fixed the Initial CI to be the first CI listed in a change
set where all change sets are sorted by the CI identifiers. We
then suggest a list of CIs that should also be changed based
on their corresponding values in the matrices.

To simulate the interaction of the analyst with DRACA,
we check which of these suggestions actually exists in the
occurred set. Any suggested CI that happens to also exist in
the occurred set will be treated as accepted by the analyst.
For each accepted CI, DRACA looks for more suggestions.
This process continues until no more accepted CIs can be
found, or no more suggestions can be found.

For example, consider this change set: {x, y, z, w}. In this
example, the initial CI would be x making the occurred
set O = {y, z, w}. Given x, assume DRACA suggests the
following set of CIs: {y, r, w}. Since y and w are part of
the occurred set, DRACA looks for more suggestions given
that y and w are accepted. Assume DRACA now suggests
{l,m}. Since none of the suggested CIs are in the occurred
set, DRACA stops iterating making the predicted set, P =
{y, r, w, l,m}. The intersection set would be PO = {y, w}.
We can now compute recall and precision based on the sizes
of sets: occurred |O| = 3, predicted |P | = 5 and intersection
|PO| = 2. This means that for this change set, recall =
|PO|/|O| = 2/3 = 0.667, and the precision = |PO|/|P | =
2/5 = 0.4.

An experiment run consists of reproducing all the change
sets from February 2006 to December 2008. For each
experiment run, we calculate the average recall and precision
values from all the change sets in the testing periods.
However, to allow time for the learning process to stabilize,
we exclude the first five testing periods, and calculate the
average recall and precision for the change sets in July 2006
to December 2008. The F-measure for each experiment run
is then calculated based on these average recall and precision
values.

C. Experimental Results

We ran the above procedure on our three year data-set.
We first present the results from applying this procedure to
a base case which suggests each CI that has occurred in
the past with a CI accepted by the analyst. We then present
the results from running the procedure while applying three
filtering techniques each of which remove some of the
suggestions made in the base case. These techniques apply



Support Threshold Recall Precision F-measure
0 (Base Case) 0.9423 0.0983 0.1780

10 0.7973 0.4674 0.5893
20 0.7488 0.6679 0.7061
30 0.7215 0.7572 0.7389
40 0.7032 0.7925 0.7452
50 0.6900 0.8307 0.7539
60 0.6793 0.8706 0.7635
70 0.6709 0.8866 0.7638
80 0.6627 0.8995 0.7635
90 0.6558 0.9095 0.7621
100 0.650 0.9208 0.7621
110 0.6451 0.9295 0.7616

Table II
RECALL/PRECISION/F-MEASURE WITH INCREASING SUPPORT

THRESHOLDS (FILTER 1)

a support threshold, a confidence threshold, and exponential
forgetting. We compare the performance of each of these
filters to the base case.

Base Case

The base case begins by determining which items have
occurred together in a change set in the past. It then predicts
members of a change set as follows. When an item x is
known to be in the current set (as determined by an analyst),
the base case suggests each item y that has previously
occurred in a change set with x. That is, Sxy is greater than
zero. For example, using the support matrix in Section V,
given that CI B is in the change set, DRACA would also
suggest A and C since they have non-zero entries in the
support matrix.

This approach is simple and seems to be promising. When
we ran our experimental procedure on this approach, it
produced a recall of 0.9423. However its precision was only
0.0983, which is so low as to be of doubtful utility. This
produces an F-measure of 0.178. We conclude that the base
case makes too many suggestions, thereby producing high
recall but too low precision. Consequently, we proceed to
apply filters to prune out some of the base case’s suggestions,
hoping to gain precision at ideally a reasonable cost in
decreased recall.

Filter 1: Support Threshold

We use the support matrix to count how many times each
pair of CIs changed together. We use these counts as our
first filter to refine the base case as follows. When an item
x is known to be in the change set (as determined by an
analyst), Filter 1 suggests each item y that has previously
occurred in a change set with x more than t times, where
t is a parameter called the support threshold. Otherwise, y
is not suggested. For example, two CIs that have changed
together 10 times in the past is stronger evidence that they
may change together in the future when compared to two
CIs that have changed only 5 times together in the past. Our

Figure 4. Recall/Precision/F-measure with increasing support thresholds
(Filter 1)

expectation is that such a threshold will eliminate enough
suggested CIs to increase precision and thereby to improve
upon the base case. Table II shows the effect of varying the
support threshold. The graph in Figure 4 shows the plot of
these results.

Larger values of the threshold prune out more suggestions
that would have been made by the base case. If the threshold
is zero, no pruning takes place and this procedure devolves to
the base case; this can be seen in the first row of Table II. As
can be seen, as the support threshold increases, the precision
increases with an accompanying decrease in recall. This, in
turn, causes the F-measure to improve to about 0.76 at a
threshold of about 70, and then starts decreasing. At that
point the recall is approximately 67% and the precision is
approximately 89%.

Although these values seem to indicate that this filter is
potentially useful in practice, in fact it cannot be expected
to continue to work well. This is because the counts of
pair occurrences (i.e., support) continues to grow with time,
while the support threshold remains constant. Eventually a
problem will arise, in that the increasing support counts
will allow more and more suggestions, so precision will be
degraded.

Filter 2: Confidence Threshold

Filter 1 improved the F-measure of our predictions, but
it, unfortunately, depends on the length of time the system
has been running. The second filter (confidence threshold)
is much like the first filter but avoids this problem by using
relative counts. When an item x is known to be in the change
set (as determined by an analyst), this procedure suggests
each item y such that y′s confidence with respect to x is
greater u, where u is called the confidence threshold.

To illustrate how Filter 2 works, consider the example
confidence matrix we presented earlier in which CBA = 0.5
and CBC = 0.4. If B is known to be in a change set, and
if the confidence threshold is 0.2, then both A and C will
be suggested as likely members of the change set because
both CBA and CBC exceed 0.2. However, if the confidence
threshold is 0.45, only A will be suggested.



Confidence Threshold Recall Precision F-measure
0 (Base Case) 0.942 0.098 0.178

0.1 0.924 0.320 0.476
0.2 0.899 0.399 0.552
0.3 0.872 0.476 0.616
0.4 0.850 0.529 0.652
0.5 0.816 0.625 0.707
0.6 0.791 0.682 0.732
0.7 0.753 0.768 0.760
0.8 0.718 0.837 0.773

0.82 0.712 0.850 0.775
0.84 0.710 0.857 0.776
0.86 0.695 0.887 0.779
0.88 0.678 0.899 0.773
0.9 0.666 0.914 0.770

0.92 0.658 0.924 0.769
0.94 0.650 0.932 0.766
0.96 0.644 0.938 0.764
0.98 0.638 0.942 0.761
1.0 0.594 1 0.745

Table III
RECALL/PRECISION/F-MEASURE WITH INCREASING CONFIDENCE

THRESHOLDS (FILTER 2)

Table III shows the effect of varying the confidence
threshold on the recall and precision levels, and accordingly
on the F-measure. Figure 5 shows the plot of these results.
As in the case of the previous filter (support threshold),
larger values of the threshold prune out more of the sugges-
tions that would have been made by the base case. Similarly,
if the threshold u is zero, this procedure devolves to the base
case; this can be seen in the first row of Table III.

The table and figure show that as the confidence threshold
is raised, the F-measure keeps improving until a threshold
of about 0.8 is reached and then starts falling. To find a
more exact value for which the F-measure maximizes, we
tested all confidence thresholds form 0.8 – 1.0 in intervals of
0.02. This showed that the F-measure reached a maximum
value of 0.779 at a threshold of about 0.86, and then started
falling. At that maximum value, recall was about 70% and
precision was about 89%. These values are somewhat better
than those from the previous filter, but more important is
the expectation that this second filter will keep producing
good recall and precision with the passage of time. These
high values indicate that this filter is potentially useful in
practice.

Filter 3: Exponential Forgetting

Our third filter is based on the idea that more recent
information should count for more. Since we are dealing
with dynamic systems, the relationship between CIs may
change over time or the way they depend on each other may
change. Therefore, more recent change sets should reflect the
current state of the system better than change sets that took
place a year ago, for example. When applying exponential
forgetting, we use the concept of half-life to indicate how
fast the forgetting occurs. The half-life measures after how

Figure 5. Recall/Precision/F-measure with increasing confidence thresh-
olds (Filter 2)

much time will we only remember half the amount of any
information. This determines the rate at which we forget
previous information. A shorter half-life means quicker
forgetting of information, while a longer half-life means
retaining any learned information for a longer period of time.

As previously explained, in order to calculate the support
matrix, we count the number of times CIs appear in the
change reports. If no exponential forgetting is used, then
every time a CI appears in a change report, we increment
its count by 1 regardless of the time this change occurred at.
Let us call the amount we increment by, in this case 1, the
impact of the new piece of information. With exponential
forgetting, the impact of a new piece of information will
depend on the current time and on the time this piece of
information occurred at. Given the half life, λ, we use the
following formula to calculate the impact, It0 at the present
time tnow of a change set that occurred at time t0:

It0 = 2−
(tnow−t0)

λ (5)

In our work, we update the support and confidence ma-
trices every month. Therefore, when predicting the change
sets for April for example, we assume that t0 is March 31st.
The impact of the data learned from previous months in
the support and confidence matrices is adjusted accordingly.
After we are done predicting the change sets in April, the
new t0 time becomes April 30th, and we add the change sets
in April to our matrices, and adjust their impact accordingly.

Before applying exponential forgetting, we filter using our
best results from Filters 1 and 2. This is done by applying
Filter 2 (which produced better results than Filter 1) with
its confidence threshold set to 0.86 (the best setting of
that threshold). Table IV and Figure 6 show the results of
exponential forgetting with that threshold active.

As shown, varying the half-life only slightly improved
results. The results suggest that the best half-life is 12
months with an F-measure of approximately 0.7803.



Half-life Recall Precision F-measure
3 months 0.7074 0.8623 0.7772
6 months 0.6987 0.8782 0.7782
9 months 0.6982 0.8828 0.7798

12 months 0.6980 0.8847 0.7803
15 months 0.6965 0.8858 0.7798
18 months 0.7176 0.8453 0.7763
21 months 0.6961 0.8867 0.7799
24 months 0.6960 0.8868 0.7799
27 months 0.6965 0.8858 0.7798
30 months 0.6960 0.8868 0.7799
33 months 0.6959 0.8869 0.7799
36 months 0.6959 0.8869 0.7799
∞ 0.6945 0.8869 0.7790

Table IV
RECALL/PRECISION/F-MEASURE WITHE A CONFIDENCE THRESHOLD

OF 0.86 AND INCREASING HALF-LIFE, λ (FILTER 3)

D. Discussion of Results

The obtained results seems promising since they indicate
that the change set data is highly predictive, with high
values of recall and precision. However, a question that
arose during these experiments is this: Why are the values
of recall, precision and the F-measure so high? These values
are higher than figures from experiments such as predicting
change sets in source code updating [1], [2], [10]. This
question became more intriguing with the bottom row of
Table III which documents the situation when the confidence
threshold is 1.0. This threshold implies that the procedure
will make absolutely no suggestions. In other words, the
procedure will predict that the change set contains nothing
but the item originally provided by the analyst. As the
table shows, with this threshold, the F-measure (0.745) is
reasonably high.

Both the high recall (0.594) and high precision (1.0)
contribute to this high F-measure. The perfect precision
can be explained as follows. Since precision measures the
percentage of suggestions made that were correct, making
no suggestions at all means making no mistakes at all which
produces a perfect precision of 1.0. This maximal possible
value of precision helps make the F-measure be high.

However, it was the corresponding high recall value that
came as a surprise. Achieving perfect precision is usually
accompanied by a very low recall rate, but this was not what
we observed. The corresponding observed high recall value
(0.594) has the following explanation. In the analyzed data,
we found out that 16,294 change orders out of the total of
27,305 change orders studied contained only 1 CI in their
change set. This means that roughly 59% of the change sets
in the data contain exactly one CI. Each such CI will be
selected by the analyst as the initial CI leaving the occurred
set empty. This means that the occurred set is empty about
59% of the time. If the occurred set is empty, recall is 1.0
by definition [1]. However, if the occurred set is not empty,
and no suggestions are made, then recall is 0. Since 59% of

Figure 6. Recall/Precision/F-measure with a confidence threshold of 0.86
and increasing half-life, λ (Filter 3)

the change sets have empty occurred sets, it follows that the
average recall of all change sets is about 59% in the case in
which the procedure makes no suggestions.

In our experiment, we determined that a value of 0.86
for the confidence threshold u produces the maximum F-
measure value (0.779). We interpret this as follows. This
u value (0.86) is close enough to 1.0 so it suggests no
CIs most of the time which matches the change sets of
size 1. Additionally, when it does make suggestions, it
suggests only high frequency pairs that have a high chance
of being correct. This explains why the experiment has such
simultaneous high recall and precision results.

One interpretation of this situation is as follows. Filter 2
learned to perform well (as shown by its recall, precision
and F-measure values) and it accomplished this by making
no suggestions in many cases. Another interpretation would
question the convention of defining precision to be 1.0 in
the case of an empty suggestion set as this definition seems
to inflate the value of precision. Another interpretation or
approach would ignore all singleton change sets and would
re-run the experiments using only change sets of size at least
two. The authors favor the first interpretation, but recognize
that the other interpretations have merit. Regardless of the
interpretation, it appears that Filter 2 may adapt reasonably
well to other historical data of change sets that either do or
do not contain many singleton change sets; future work may
confirm this position.

Figure 7 compares the recall-precision curves of the first
two filters. These curves are based on the precision and recall
columns of Tables II and III. The top left point of these two
curves corresponds to the base case. As the figure shows, the
curve for Filter 1 (support threshold) lies below that of Filter
2 (confidence threshold). This indicates that in all cases
Filter 2 outperformed Filter 1. Since Filter 2 produced the
best results in our experiments, we used confidence to rank
the set of suggested CIs that are displayed to the analyst.

Applying exponential forgetting with the optimal confi-
dence threshold of 0.86 slightly improved results (raising



Figure 7. Comparing recall and precision for Filter 1 (support threshold)
and Filter 2 (confidence threshold)

the F-measure from 77.9% to 78.03% with a half life λ =
12 months). We believe that this is due to the nature of the
system data we are analyzing with is more or less stable in
the sense that once a change set occurs, it is likely that it
will occur again in the future. With a more dynamic system,
we expect that varying the half-life would produce more
significant variances in the results.

E. Threats to Validity

Although our results seem promising, we still cannot
conclude that our findings will apply to different systems.
We presented our results from analysis of one system, which
is the system used by CA’s GIS team. We reviewed one other
system, but it did not use change sets so we were not able
to apply our technique to it. Ideally, in the future we may
be able to analyze more systems which use change sets,
but this may be challenging as it is not easy to gain access
to industrial systems. Analyzing additional systems would
allow us to better evaluate the utility of various filter.

VII. RELATED WORK

There has been much work done on how to predict the
propagation of change of one software entity to another
at the source code level (e.g., [11], [12]). Our work is
analogous to the work done by Hassan et al. [1] where
they perform similar analysis to ours but on the level of
the source code. They study four main heuristics to predict
change sets, historical co-changes being one of them. They
use pruning techniques to improve the recall and precision
values while combining their proposed heuristics in different
ways. Without pruning, the heuristics produced high recall
values, but very low precision values. With a hybrid tech-
nique that combines historical co-changes with file structure
information and pruning, an average recall of 0.51 and an
average precision of 0.49 was achieved.

Zimmermann et al. [2] present their tool, ROSE, which
guides programmers during the change process for updat-
ing source code by suggesting other program entities that

previous programmers have changed in the same situation.
This is done by mining the CVS repository to discover
which program entities were changed together. Rules are
then produced based on the entities that change together
frequently, and are assigned a support and confidence level
as previously described above [3]. Their results show that
for stable systems, ROSE obtained a precision of 0.44 and
a recall of 0.28.

In related work, Canfora et al. [4] predict change sets by
mining textual descriptions of change requests rather than
considering entities that changed at the same time only.
That is, when a change request is received, related change
requests are retrieved based on the similarity of the textual
descriptions of both reports, and accordingly, the changed
files in the retrieved reports are recommended according to
the rankings.

The goal of the above related work, as well as other
similar work [10], [13], is to predict possible source code
changes and change impacts. On a service or system level,
there has been less work dedicated to identifying the effect
of a change. Work in this direction includes that by Kumar
et al. [14] which present an ontology which helps in iden-
tifying and quantifying the impact of changes. Similarly, de
Boer [15] uses heuristics based on the semantic meanings
of the relationships between components in an architecture
to identify the ripple effect of a change. However, there
is no other work, to our knowledge, that applies data
mining techniques and uses historical data to predict change
propagation on the system level.

VIII. FUTURE WORK

In this paper, we used simple heuristics to investigate if
the nature of changes stored in a CMDB is predictive or
not. Since our results seem promising, we intend to expand
on this work using more of the available information. As
shown in Section VI-A, there are several input fields in
a change order that we might use in the future to derive
additional information to help predict change impact. For
example, looking at the description of the change along with
the CIs which changed can allow us to have a classification
of the different types of changes, and to predict which CIs
to change based on the nature of the change. Additionally,
looking at which analysts perform which changes can allow
us to recommend the best analyst to perform the current
change.

We also plan to add more decision support to our tool.
For example, DRACA could not only suggest other CIs to
change, but also the best time to implement this change
based on the availability schedule of all CIs involved in
the change set. Additionally, to reduce the probability of
a change causing a failure sometime later in the system,
we could bundle change orders with incident reports in the
CMDB to identify which changes induced incidents, similar
to the work in [16].



IX. CONCLUSION

Proactively identifying CIs that will be impacted by a
change can prevent costly outages. On the long run, this
makes an IT system more maintainable. Through examin-
ing previous change sets in CA’s CMDB, we provided a
decision-support technique for creating change sets. DRACA
suggests the CIs that should be included in a change set, and
also provides a ranking of these CIs based on their pattern
of recurrence in the past. By modeling this recurrence in
support and confidence matrices, and by applying different
filters, we were able to predict change sets with a combi-
nation of recall and precision as high as 69.8% and 88.5%
respectively.

We presented the effect of different filters we applied to
the suggested set of CIs. These include a support threshold,
a confidence threshold and exponential forgetting. The con-
fidence threshold seemed to be the most effective threshold
and greatly improved results. Although we mine our data
out of the CMDB repository, this work can be applied on
any repository with a different format as long as change sets
are recorded.

Our results are promising and show that the change sets
are highly repetitive. Our next step is to use additional
sources of data such as calendar information for example
to be able to provide more advice and decision-support to
the analyst.
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