
A Study of Variability Spaces in Open Source
Software

Sarah Nadi
David R. Cheriton School of Computer Science

University of Waterloo, ON, Canada
snadi@uwaterloo.ca

http://swag.uwaterloo.ca/~snadi

Abstract—Configurable software systems allow users to cus-
tomize them according to their needs. Supporting such variability
is commonly divided into three parts: configuration space, build
space, and code space. In this research abstract, we describe
our work in exploring what information these spaces contain in
practice, and if this information is consistent. This involves investi-
gating how these spaces work together to ensure that variability
is correctly implemented, and to avoid any inconsistencies or
anomalies. Our work identifies how variability is implemented in
several configurable systems, and initially focuses on less studied
parts such as the build system. Our goals include: 1) investi-
gating what information each space provides, 2) quantifying the
variability in the build system, 3) studying the effect of build
system constraints on variability anomalies, and 4) analyzing
how variability anomalies are introduced and fixed. Achieving
these goals would help developers make informed decisions
when designing variable software, and improve maintainability
of existing configurable systems.

Index Terms—Software Variability, Variability Anomalies,
Linux, Mining Software Repositories

I. INTRODUCTION

A configurable system (e.g., the Linux kernel) allows users
to select the features they are interested in, and to compile
the system with this specific configuration. Thus, different
variants of the system can be generated from the same code
base according to the user’s selected configration. Such systems
usually have some form of model that describes the features
supported by the system, and the dependencies and constraints
between these features. Some mapping scheme is then needed
to map this feature selection to the desired areas in the code
such that the corresponding variant can be correctly generated.
Although other terms have been used to describe these parts
of the system in related research areas (e.g., feature model [1],
problem/solution space [2]), we use the terms configuration
space, build space, and code space to describe the three
information spaces that support variability in a system since
they are more descriptive for our research purposes. The
configuration space specifies the features supported by the
system, and their dependencies. The build space controls the
compilation process such that the user’s feature selection is
mapped into the correct source files which are then compiled
and linked into the final product. The code space contains the
source code implementing the system’s supported functionality.

Each variability space contains dependencies and constraints
that govern the variability in the system. The three spaces may

be scattered across the system in different types of artifacts
(e.g., Linux’s C files and Makefiles) or may be combined
together (e.g., eCos’s CDL files). In either case, the constraints
enforced by these three spaces must be clear and consistent.
Previous work has typically studied one of these spaces in
isolation [3], [4] or in terms of how two of the spaces co-
evolve [5], [6]. However, there has not been an attempt to
comprehensively study the variability of the three combined.
Such a study is important to enable large scale variable systems
to be easily maintainable while preserving their configurability.
To comprehensively study software variability, we need to
analyze the overlap between the spaces, as well as any conflicts
between them. Our goal is to provide such a comprehensive
view of variability in open source software.

In this work, we study existing configurable open-source
software to analyze how variability is implemented in practice,
and what information each of the three spaces actually provides.
Such information can help in designing new configurable
systems, and improving the maintainability of existing ones.
Our study of variability spaces proposes the following:

1) Evaluating the commonality and differences in the
variability information provided by the three spaces.

2) Studying variability in build systems since they play an
important role in supporting variability, but have not been
commonly studied in that context.

3) Combining variability constraints from all three spaces
to detect anomalies in the system.

4) Performing an origin study of variability anomalies.

To achieve these goals, we choose the Linux kernel as our
main case study since it is one of the biggest configurable
open source software systems available with over 12,000
configurable features. Whenever applicable, we plan to study
other configurable systems to verify our findings. In this
research abstract, we describe our work in terms of the Linux
kernel for simplicity and consistency.

We present our research as follows. Section II gives related
background information about Linux. Section III discusses our
approach, as well as our current progress. Section IV highlights
key benefits and contributions of this work. Section V presents
related research, and Section VI concludes this abstract.

978-1-4673-3076-3/13 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA
Doctoral Symposium

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1353



II. VARIABILITY IN THE LINUX KERNEL

There are three artifacts that control variability in Linux
which correspond to the three variability spaces described
above: KCONFIG files (configuration space), KBUILD Makefiles
(build space), and source code files (code space). KCONFIG files
describe the various features of the Linux kernel. They specify
configuration options and their interdependencies. Detailed
description of the KCONFIG files, and how they describe
Linux’s feature model can be found in other work [5]. KBUILD
Makefiles indicate which source files get compiled according
to the user’s selection. Through a special notation [7], [8],
the Makefiles specify which KCONFIG feature(s) need to be
selected for a particular file to compile. The source code in
Linux (e.g., C files) implements the functionalities of the kernel,
and uses C preprocessor (CPP) directives to provide conditional
compilation according to the user’s selection. That is, some
parts of the code will only get compiled if certain kconfig
features are chosen. More information about the Linux build
process can be found in our previous work [7].

III. APPROACH AND RESEARCH QUESTIONS

Figure 1 shows how we divide our work into four main parts
depicted as research questions. For each question, we explain
its goal, the approach followed, and our current status.

A. RQ1: What information does each of the three spaces
provide, and what is the overlap between spaces?

Goal and Motivation. Each of the three variability spaces
has constraints that control the possible variants generated
by the system. However, it is not clear what is the overlap
between the spaces. Is it enough to analyze the configuration
space only? Is analyzing the code sufficient? Or do we always
need to analyze all aspects of the system. We aim to explore
where the constraints in the configuration space are reflected in
the code and build files, and whether one is an over estimation
of the other. We anticipate facing some challenges such as
accurately extracting and calculating all variability constraints
inthe three spaces including non-boolean constraints.

Approach. We plan to analyze several configurable software
systems. We will first extract the constraints in each of the
three spaces using existing tools (e.g., [4], [9]). We then
plan to compare the constraints in the three spaces to find
commonalities and overlaps, and identify common cases where
the constraints in the variability model are reflected in the code
or not. Such work will also uncover the limits of static analysis
techniques to extract variability information from the code.

Status. This part of our work is currently in progress.

B. RQ2: What role do build systems play in variability
implementation?

Goal and Motivation. During our initial investigation of
software variability, we found that the build system contains
important variability information, and yet its role has not been
thoroughly studied. Our goal here is to understand how the
build system contributes to variability support.

Fig. 1. Overview of our approach.

Approach. We choose the Linux kernel as a case study. We
study Linux’s documentation, and examine its build system
(KBUILD) files. To understand the variability in KBUILD, we
need to parse the Makefiles to extract the constraints that
specify which feature(s) each source file depends on. This
extraction also allows us to quantify the build system variability
by counting the number of features used in the build system
versus those used in the code. The size of the constraints in
the build system also reflects the complexity of variability
supported there. We plan to analyze all architectures of the
Linux kernel, and perform this analysis on several releases.

Status. Statically extracting the variability constraints from
KBUILD is challenging since it uses a complicated syntax, and
a recursive build system. We have developed a Makefile con-
straint extractor that approximates the constraints controlling
source file compilation in KBUILD [8]. We have performed a
quantitative analysis of the variability in KBUILD [10] using
a set of metrics adapted from Liebig et al. [11]. We found
that on average, KBUILD uses 63% of the features supported
in Linux, and that 46% of these features are exclusively used
in KBUILD to control source file compilation which indicates
that KBUILD is a major part of the variability implementation
in Linux. However, we found that the constraints in KBUILD
are not very complex, and that the compilation of each file is
usually controlled by a single feature.

Future Work. We plan to do a deeper investigation of our
results by exploring the patterns of feature usages. For example,
this includes understanding the nature of features that are only
used in the build space or only used in the code space. We
also plan to quantify variability in other systems (e.g., ECOS).

1354



C. RQ3: Is the variability in all three spaces consistent?

Goal and Motivation. When variability implementation is
scattered over different parts of the system, inconsistencies
are inevitable. Previous work by Tartler et al. [12] detected
many dead and undead CPP guarded parts of the code due to
inconsistencies between the constraints in the configuration
and code spaces. However, the effect of the build system has
not been studied. Our goal here is to include KBUILD in the
anomaly detection process, and determine its effect.

Approach. We choose Linux as a case study. We first look
at variability anomalies within the build system itself, and
then look at how adding KBUILD constraints to the analysis
affects the variability anomalies detected. We call the first
category of anomalies, syntactic variability anomalies since
they are more related to the way KBUILD has been setup,
while we refer to the second category as semantic variability
anomalies since they arise from conflicts in constraints. We
develop heuristics to identify syntactic anomalies. We then
extend Tartler et al.’s [12] work, which uses SAT solvers to
detect inconsistencies, by including the build space constraints
extracted from our Makefile constraint extractor in the previous
step. Our approach includes studying several releases of the
Linux kernel, and comparing the anomalies detected with and
without considering the KBUILD constraints. We also track the
evolution of these anomalies across the releases.

Status. We have developed heuristics to find three types of
syntactic variability anomalies in Linux [7]. We performed a
longitudinal study over several releases of the Linux kernel,
and demonstrated that these anomalies get introduced and fixed
over time. We have also extended the UNDERTAKER [12] tool
to include the constraints we extracted from KBUILD Makefiles,
and have shown that including the constraints from KBUILD
allows more variability anomalies to be detected [8].

Future Work. We plan to further validate these findings on
other configurable systems such as BusyBox, eCos etc.

D. RQ4: How are variability anomalies introduced and fixed?

Goal and Motivation. Addressing RQ3 establishes that
variability anomalies do exist in Linux which indicates that
it would be beneficial to have tools that automatically detect
these anomalies and suggest fixes for them. It would even be
more beneficial to have these tools be proactive such that they
detect the change that introduces this anomaly and report it
right away. To provide such intelligent maintenance support,
we need to first understand how these anomalies get introduced
in the first place, and how developers usually fix them.

Approach. We focus on the Linux kernel, and divide our
approach into two parts. We first determine the patterns of
causes and fixes to look for through an exploratory study of
a set of existing patches that were submitted to Linux kernel
developers to solve previously detected variability anomalies by
Tartler et al. [12]. We focus on referential variability anomalies
which are anomalies that arise due to a mismatch between
the features used in the code in Linux, and those defined
in KCONFIG. After determining these patterns, we need to
perform a confirmatory case study on several releases of

the Linux kernel to determine if the patterns we found for
causes and fixes hold. We look for commits in Linux’s GIT
repository that may be possible causes and fixes of variability
anomalies. Automatically determining potential causes and
fixes is challenging. We develop heuristics to identify such
commits that are based on the nature of the patch in the commit,
as well as its temporal relation to the detected anomaly.

Status. We performed both the exploratory case study and
the confirmatory one. Our results are currently under review.
Our findings suggest that KCONFIG changes often have wide
cross-cutting effects on the code that are not immediately
detected, and must often be fixed by subsequent code changes.

Future Work. The study we have performed so far focused
on referential variability anomalies (i.e., those caused by using
undefined of incorrect KCONFIG features). Extending this work
to include other types of anomalies that are directly caused by
conflicts in constraints would be interesting.

IV. EXPECTED BENEFITS

Answering the above research questions allows us to provide
support to developers in designing, analyzing and maintaining
configurable software. Specifically, we foresee the following
benefits and contributions to the outcome of our work.

1) Guiding future analysis of variable software by determin-
ing the overlaps between different spaces in variability
implementation.

2) Decreasing variability anomalies in software systems.
3) Improving the maintainability of variable software.
4) Guiding the design and implementation of software

systems supporting variability.

V. RELATED WORK

A. Software Variability and Variability Anomalies

The Linux kernel has been one of the main subjects of
variability research due to its large size and number of sup-
ported features. The work on Linux (as well as other systems)
has mainly focused on analyzing variability information in
the source code [4], or in the configuration files [3], [5].
By analyzing the constraints from both the source code and
KCONFIG, Tartler et al. [12] detected variability anomalies in
Linux. They also provided patches to fix some of these detected
variability anomalies. However, that work did not include the
constraints from KBUILD in the analysis. Additionally, to the
best of our knowledge, there has not been any comprehensive
work done to understand how these variability anomalies get
introduced, and how they eventually get fixed. Studying the
origin of these variability anomalies is important in order to
provide tools that support more proactive anomaly prevention.

B. Build System Variability

McIntosh et al. [13] and Adams et al. [6] studied build files
and their evolution in Java systems and MAKE based systems.
They analyzed the dependencies between build targets, but
did not study the configuration features that appear in the
build files, and how they contribute to the overall variability
of the system. Part of their findings showed that the build

1355



system’s complexity grows over time in terms of its size, and
the number of targets it supports. Such results suggest that
studying build systems is important and that they consume a
fair amount of maintenance effort. Since such work does not
include variability information, and only focuses on static code
dependencies between source files, further analysis of build
systems from a variability perspective is needed.

It is our understanding that Berger et al. [14] were the
first to discuss build system variability. They showed that the
extraction of the presence conditions of source code files from
Makefiles is feasible. When analyzing Linux, they only look at
the x86 architecture, while the quantitative analysis we perform
for KBUILD is based on all Linux CPU architectures over
several releases, and not solely on the x86 architecture of one
release. This provides a more thorough analysis of variability
in KBUILD. We also show the effect of these constraints on
the variability of the final compiled kernel image through the
variability anomalies we detect.

To the best of our knowledge, our work [8] was the first
to analyze the effect of variability in KBUILD on anomalies.
Recently, the UNDERTAKER team analyzed KBUILD [15], and
developed their own Makefile parser, GOLEM [16], which uses
a dynamic probing mechanism. The goal of our work is not to
determine the most accurate parsing for Makefiles, but rather to
clarify the role of the build system in variability implementation
so that it is recognized in future variability research.

C. Bug-Introducing Changes
It has been commonly believed that changes to the code often

introduce bugs. Our finding that KCONFIG changes often cause
variability anomalies aligns with this belief. Identifying bug-
introducing changes is a well researched topic (e.g., [17], [18],
[19]). Most of the techniques used are based on training models
that are used to predict future bug introducing changes. We
adopt a different approach since there has not been much work
in determining the causes and fixes of variability anomalies.
Thus, we first perform an exploratory study to determine criteria
for finding causes and fixes of variability anomalies tailored to
Linux’s variability implementation. Our work is also different
in that we do not only focus on source code changes, but rather
we relate changes in one part of the system (KCONFIG) to
anomalies in a different part (source code).

VI. CONCLUSION

Our proposed work aims to provide better support for
designing and maintaining configurable software. By analyzing
variability implementation from various angles, we provide
better anomaly detection mechanisms, and facilitate future
variability analysis by clarifying the origin and implications of
variability constraints in different parts of the implementation.
We do this through studying several configurable systems, with
Linux being our main case study. Our work has so far helped
in uncovering existing variability anomalies in Linux, and
providing patterns for the causes and fixes of such anomalies.

ACKNOWLEDGMENTS

This work is under the supervision of Ric Holt.

REFERENCES

[1] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-
oriented domain analysis (FODA) feasibility study,” CMU/SEI-90-TR-21,
Software Engineering Institute, Carnegie Mellon University, Tech. Rep.,
1990.

[2] K. Czarnecki and E. Ulrich, Components and Generative Programming,
ser. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer,
1999, vol. 1687, pp. 2 – 19.

[3] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki, “Variability
modeling in the real: a perspective from the operating systems domain,”
in ASE ’10: Proceedings of the IEEE/ACM international conference on
Automated software engineering. ACM, 2010, pp. 73–82.

[4] C. Kästner, P. Giarrusso, T. Rendel, S. Erdweg, K. Ostermann, and
T. Berger, “Variability-aware parsing in the presence of lexical macros
and conditional compilation,” in OOPSLA ’11: Proceedings of the 2011
Conference on Object-Oriented Programming Systems, Languages, and
Applications, 2011.

[5] R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wasowski, “Evolution
of the Linux kernel variability model,” in SPLC’10: Proceedings of the
14th International Conference on Software Product Lines: Going Beyond.
Springer-Verlag, 2010, pp. 136–150.

[6] B. Adams, K. De Schutter, H. Tromp, and W. De Meuter, “The evolution
of the Linux build system,” in EVOL ’07: Proceedings of the 3rd
International ERCIM Symposium on Software Evolution, vol. 8, no. 0,
2007.

[7] S. Nadi and R. Holt, “Make it or break it: Mining anomalies in Linux
Kbuild,” in WCRE ’11: Proceedings of the 18th Working Conference on
Reverse Engineering, 2011.

[8] ——, “Mining Kbuild to detect variability anomalies in Linux,” in
CSMR ’12: Proceedings of the 16th European Conference on Software
Maintenance and Reengineering, March 2012, pp. 107 –116.

[9] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki, “Variability
model of the linux kernel,” in VaMoS 2010: Proceedings of the 4th
International Workshop on Variability Modeling of Software-intensive
Systems, 2010.

[10] S. Nadi and R. Holt, “The linux kernel: A case study of build system
variability,” Journal of Software: Evolution and Process, 2013, (Accepted
to appear).

[11] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze, “An analysis
of the variability in forty preprocessor-based software product lines,” in
ICSE ’10: Proceedings of the 32nd International Conference on Software
Engineering, vol. 1, may 2010, pp. 105 –114.

[12] R. Tartler, D. Lohmann, J. Sincero, and W. Schröder-Preikschat, “Fea-
ture Consistency in Compile-Time Configurable System Software,” in
Proceedings of the EuroSys 2011 Conference (EuroSys ’11), G. Heiser
and C. Kirsch, Eds., New York, NY, USA, 2011, pp. 47–60.

[13] S. McIntosh, B. Adams, and A. Hassan, “The evolution of Java build
systems,” Empirical Software Engineering, pp. 1–31, 2011.

[14] T. Berger, S. She, R. Lotufo, K. Czarnecki, and A. Wasowski, “Feature-
to-code mapping in two large product lines,” in SPLC’10: Proceedings of
the 14th International Software Product Line Conference. Poster Session.
Springer Berlin/Heidelberg, 2010.

[15] C. Dietrich, R. Tartler, W. Schröder-Preikschat, and D. Lohmann, “Un-
derstanding Linux feature distribution,” in AOSD-MISS ’12: Proceedings
of the 2nd AOSD Workshop on Modularity in Systems Software, 2012.

[16] C. Dietrich, R. Tartler, W. Schröder-Preikschat, and D. Lohmann, “A
robust approach for variability extraction from the Linux build system,”
in SPLC ’12: Proceedings of the 16th International Software Product
Line Conference (to appear), 2012.

[17] S. Kim, T. Zimmermann, K. Pan, and E. Whitehead, “Automatic
identification of bug-introducing changes,” in ASE ’06: Proceedings
of the 21st IEEE/ACM International Conference on Automated Software
Engineering, Sept. 2006, pp. 81 –90.

[18] L. Aversano, L. Cerulo, and C. Del Grosso, “Learning from bug-
introducing changes to prevent fault prone code,” in IWPSE ’07:
Proceedings of the 9th International workshop on Principles of software
evolution: in conjunction with the 6th ESEC/FSE joint meeting. New
York, NY, USA: ACM, 2007, pp. 19–26.

[19] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” in MSR ’05: Proceedings of the 2nd International Workshop on
Mining Software Repositories, ser. MSR ’05. New York, NY, USA:
ACM, 2005, pp. 1–5.

1356


