
Make it or Break it:
Mining Anomalies in Linux Kbuild

Sarah Nadi and Ric Holt
David R. Cheriton School of Computer Science

University of Waterloo
Ontario, Canada

Email: snadi, holt@uwaterloo.ca

Abstract—The Linux kernel has long been an interesting
subject of study in terms of its source code. Recently, it has also
been studied in terms of its variability since the Linux kernel can
be configured to include or omit certain features according to the
user’s selection. These features are defined in the Kconfig files
included in the Linux kernel code. Several articles study both the
source code and Kconfig files to ensure variability is correctly
implemented and to detect anomalies. However, these studies
ignore the Makefiles which are another important component
that controls the variability of the Linux kernel. The Makefiles
are responsible for specifying what actually gets compiled and
built into the final kernel. With over 1,300 Makefiles, more
than 35,000 source code files, and over 10,000 Kconfig features,
inconsistencies and anomalies are inevitable. In this paper, we
explore the Linux’s Makefiles (Kbuild) to detect anomalies. We
develop three rules to identify anomalies in the Makefiles. Using
these rules, we detect 89 anomalies in the latest release of the
Linux kernel (2.6.38.6). We also perform a longitudinal analysis
to study the evolution of Kbuild anomalies over time, and the
solutions implemented to correct them. Our results show that
many of the anomalies we detect are eventually corrected in
future releases. This work is a first attempt at exploring the
consistency of the variability implemented in Kbuild with the rest
of the kernel. Such work opens the door for automatic anomaly
detection in build systems which can save developers time in the
future.

I. INTRODUCTION

The Linux kernel is one of the most studied open source
software repositories. The Linux kernel consists of source
code files, configuration files, and Makefiles [5]. However,
in the past it has mostly been studied in terms of its source
code (e.g., [6]). Recently, the Linux kernel has also been
studied in terms of its variability and configurability [19], [21].
Variability studies on the Linux kernel have focused on the
Kernel configuration (Kconfig) files and how they are related
to the source code implementation. However, most of these
variability studies have generally overlooked the build system
despite its importance.

Studies show that build files tend to be ignored although
they are important artifacts of a software system [18]. In a
survey conducted by Kumfert et al. [9], the authors found that
maintaining build systems accounts for 12% of the overhead
time in the software development process which suggests that
build systems play an important role. The build system (which
usually consists of Makefiles and/or build scripts) is the ulti-
mate controller of what ends up in the final software product.

In the case of Linux, the make tool, originally proposed by
Feldman [5], is used to build the kernel. Any mistake in the
Makefiles which are read by make can lead to undesired
behavior in the final kernel. In this sense, the build system can
either make the system work as desired, or break the system.
A challenge here is that some anomalies or inconsistencies do
not cause the build process itself to break, but cause subtle
inconsistencies in the behavior of the system that can remain
undetected for a long time. Automatic discovery of anomalies
in the build system is therefore important.

The Linux kernel is an interesting subject of study in terms
of its Kernel build (Kbuild) system since Kbuild cooperates
with the other artifacts in the system (source code and Kconfig)
to implement variability in the kernel. Linux allows the user
to configure the kernel such that an instance of the kernel
is compiled with the options the user has selected. There are
three spaces involved in this process: the implementation space
(source code), the configuration space (Kconfig files), and
the compilation space (Makefiles). In version 2.6.38.6 of the
Linux kernel, the implementation space size is over 35,000
files (including .c, .h and .S files), the configuration space
consists of over 10,000 features [22], and the compilation
space consists of more than 1,300 Makefiles. The combination
of constraints in these three spaces controls the resulting built
kernel. With the large sizes of these spaces, one can almost
be sure that there will be mistakes and conflicts which can
result in undesired behavior in the kernel. Tartler et al. [22]
study part of this problem by presenting the constraints in the
implementation space and the configuration space as propo-
sitional formulas, and then using these formulas to identify
code blocks which do not satisfy them. They do not, however,
consider the compilation space in their analysis.

Considering the compilation space is essential because if
a source code file is not referenced in the Makefiles then
the feature(s) it is implementing will never be included in
the final kernel. It is, therefore important to make sure that
the Makefiles are correctly setup to use all the necessary
source files and to only compile them if their respective
feature option is chosen. In this sense, we define two families
of anomalies in the Kbuild system: syntactic and semantic.
Syntactic anomalies refer to incorrect setup of the Makefiles.
For example, code files that are not properly used, usage of
undefined Makefile variables or Kconfig features etc. Semantic

Fig. 1. Linux kernel build process

Kbuild anomalies, on the other hand, are logical contradictions
with any of the other two spaces. These are more challenging
to capture. In both cases, the build system does not actually
break, but undesired behavior may result.

In this paper, we focus on the first part of the problem
which is the syntactic anomalies. We examine the Kbuild
system to check that the Linux kernel variability is correctly
implemented in it, and that all the necessary source code files
are correctly referenced. Based on the existing Kbuild docu-
mentation [15], as well as our examination of the Makefiles,
we define three rules that must be satisfied for Kbuild to be
correctly setup.

We use these rules to study the Kbuild anomalies in a
snapshot of the Linux kernel (specifically release 2.6.38.6) as
well as to perform a longitudinal study to analyze the evolution
of the Kbuild anomalies over time, and how these anomalies
get fixed. We discover a total of 89 Kbuild anomalies in release
2.6.38.6 of the Linux kernel. We use 14 releases of the Linux
kernel in our longitudinal study, and find that many of the
anomalies we discover get fixed in future releases. We study
these fixes, and identify the most common solutions to the
types of anomalies we find. The main contributions of this
paper are as follows:

• We examine the Linux Kbuild system, in terms of its
variability implementation.

• We develop three rules that can be used to detect anoma-
lies in the Kbuild system.

• We run these rules on the Linux kernel code release
2.6.38.6, and detect 89 anomalies.

• We explore the evolution of Kbuild anomalies over time,
and how they get fixed by running a longitudinal study
on 14 previous kernel releases.

The rest of this paper is organized as follows. Section II
explains the process of building the Linux kernel. Section III
describes the variability of the Linux kernel by providing
background information about Kconfig and Kbuild. Section IV
describes how the three spaces of the Linux kernel must
be consistent, and Section V presents the rules we define
for consistency to be met with respect to the compilation
space. Section VI describes the results of our snapshot study,
and Section VII presents the results from our longitudinal
study. Section VIII discusses possible threats to validity. In
Section IX, we present related work. Section X suggests
possible future work, and Section XI then concludes this paper.

II. BUILDING THE LINUX KERNEL

Figure 1 illustrates the process of building the Linux kernel.
The Linux build process relies on three different artifacts in
the Linux tree: the source code files, the Kconfig files, and the
Makefiles. These three artifacts are shown on the left in the
figure.

The first step in building the Linux kernel is configuring it.
This is done using various tools that read the Kconfig files and
display them to the user in a menu format. These tools include
menuconfig, xconfig, and qconfig. These tools are
not shown on the figure, but are part of the Kconfig box.
After the user configures the kernel through Kconfig, two
files are produced: the .config file used by Kbuild, and
the autoconf.h file used by the gcc compiler. These files
contain the user’s selection of features. Although they contain
the same information, they have slightly different formats since
they are used in different places. Entries in the .config
file used by Kbuild have the format shown in Listing 1. This
format defines environment variables that will be used in the

Makefiles to control which files get compiled. A feature that
is selected will be defined as an environment variable with the
value ‘y’. More details on this are given in Section III-B.

CONFIG SOUND=y
CONFIG SOUND OSS CORE=y

Listing 1. Examples of .config entries

On the other hand, the same information will be present
in the autoconf.h file, but with the format shown in
Listing 2. This is essentially a header file that defines some
preprocessor directives that control selective compilation by
the gcc compiler. Here, selected features have the value ‘1’.

d e f i n e CONFIG SOUND 1
d e f i n e CONFIG SOUND OSS CORE 1

Listing 2. Examples of autoconf.h entries

Based on the features defined in the .config file, the
Makefiles instruct the gcc to compile and link certain files
into the final kernel image, vmlinux, shown at the bottom of
Figure 1. The Makefiles also force the header file autconf.h
to be included in all source code compilation. Accordingly,
when gcc compiles these source files, the features defined
in the header file autoconf.h determine which parts of
the code are actually compiled based on the preprocessor
directives (#ifdefs).

Figure 1 shows how the three artifacts as well as the
processes and tools fit into three spaces that ultimately con-
trol variability of the kernel. These are the configuration
space (consisting of Kconfig files), the implementation space
(consisting of source code files), and the compilation space
(consisting of Makefiles). The following sections provide more
details about Kconfig and Kbuild. For details about how vari-
ability is implemented in the source code through preprocessor
directives, we refer the reader to Sincero et al. [21].

III. VARIABILITY IN THE LINUX KERNEL

A. Kconfig

This section provides a brief description of Kconfig that is
necessary to understand the rest of this paper. More details
can be found in other work [12], [13], [19]. Kconfig files are
responsible for describing the various features that are part of
the Linux kernel. They specify possible configuration options
and their interdependencies. Each feature has a config entry
in a Kconfig file.

Listing 3 shows examples of Kconfig entries. The first entry
indicates that there is a feature called USB of type bool. This
means that this feature is either selected (its value is y) or not
selected (its value is n). It also shows that the USB feature
has a default value of y which means it is selected by default.

c o n f i g USB
boo l
d e f a u l t y

c o n f i g USB DEVICEFS
boo l ”USB d e v i c e f i l e s y s t e m ”
depends on USB

c o n f i g USB SERIAL CYPRESS M8
t r i s t a t e ”USB Cypres s M8 USB S e r i a l D r i v e r ”

Listing 3. Kconfig example

The second config entry in Listing 3 shows another feature
called USB_DEVICEFS also of type bool. The quoted text
after the config type is the prompt message that will appear
to the user during the configuration process. Additionally,
USB_DEVICEFS also depends on USB. This means that it
cannot be selected unless USB is also selected. The last entry
shows another feature USB_SERIAL_CYPRESS_M8 of type
tristate. This means that apart from the values y and n, this
feature can also take on the value m which means it will be
compiled as a loadable module.

Each CPU architecture (e.g., x86, arm etc.) has its own
Kconfig file which defines architecture specific features, and
also includes Kconfig files from other directories (such as
drivers, memory management etc.). Note that whenever Kcon-
fig features are referenced in the C code through preprocessor
directives or in the Makefiles, they have a CONFIG_ prefix
attached to their name. For example, if the USB feature is to
be used in a Makefile, it is referred to as CONFIG_USB.

B. Kbuild

As shown in Figure 1, the Kbuild system (Kernel Build
system) uses a collection of Makefiles in the Linux source
code tree which are responsible for compiling and linking the
source code into the final Linux image, vmlinux. Note that
there are also files called Kbuild files that are formatted similar
to Makefiles. Both files contain syntax understandable by
make. For simplicity purposes, we will use the term Makefiles
throughout the rest of the paper to refer to both types of files.

The Linux source code is stored in many directories, where
each directory has a collection of source files responsible for
a certain feature or a certain subsystem. There is usually a
Makefile in each of those directories, and each Makefile is
mainly responsible for the files in its directory [10].

There is a Makefile in the root of the Linux source tree
(the top Makefile). The top Makefile is responsible for setting
up all the environment variables that are needed during the
build process, e.g., the CPU architecture being built, compiler
options etc. The top Makefile reads the .config file which
comes from the Linux kernel configuration process and which
specifies all the features that have been selected by the user.

The top Makefile includes the Makefile of the CPU ar-
chitecture being built, and then each architecture’s Makefile
is responsible for selecting the relevant files that should be
compiled.

1 obj−y += b a r . o
2 obj−y += d i r 1 /
3 obj−$ (CONFIG FOOBAR) += f o o b a r . o
4 obj−$ (CONFIG FOO) += f o o . o
5 foo−y := f o o 1 . o f o o 2 . o

Listing 4. Example Makefile

Listing 4 shows a sample Makefile. This Makefile shows the
major entries in a Makefile that contribute to the variability of
the kernel. There are certain conventions followed in Kbuild
that are enforced through implicit rules [17] defined in the
Makefiles. For each directory, there is an obj-y variable
which contains a list of files that are to be compiled and linked.
The various entries in the Makefile append more files to this
list. All the files in this list (i.e., the value of the obj-y
variable) are then compiled and built into a built-in.o
object for that directory. At the end of the build process, all
the built-in.o objects in the directories are linked into the
final vmlinux product.

obj-y entries. In Line 1 of Listing 4, bar.o is added to
the list of files that will be compiled into the built-in.o
for that directory. Kbuild’s implicit rules state that each .o
file should be compiled from a corresponding .c file. In this
case, bar.c will be compiled into bar.o. Directories can
also be added to the obj-y list. For example, Line 2 adds the
directory dir1 to the this list. This means that a sub-Makefile
is being invoked. This simply tells make to visit the dir1
directory, but does not tell it what to do there. The Makefile
found in the dir1 directory is the one that will specify
which files from that directory will be compiled. Recursive
calls to make (through descending into sub directories) can
share variables if the parent process exports them into the
environment [17]. Thus, all the Makefiles can see the values
of the entries in the .config file.

Feature dependent entries. The format
obj-$(CONFIG_FEATURE) is used to allow the
compilation of certain files only if their respective features
are chosen. If CONFIG_FEATURE is set to be y, its value
will be included as part of the obj-y list and will thus be
built into the kernel as part of the built-in.o file. If it is
set to be m, it will be part of obj-m, and it will be compiled
as a loadable module. If this feature is not selected, then it
will not be defined in the .config file, and thus the variable
name will be obj- which is ignored. For example, in Line
3 of Listing 4, foobar.o will only be included in the list
of files to be compiled if the feature FOOBAR is selected.

Composite objects. Sometimes, a combination of several
source files implement one feature, and we want to group them
into one list for convenience. Then, we can include this whole
list if the corresponding feature is chosen. These are called
composite objects. Lines 4 and 5 in Listing 4 show an example
of a composite object, and its usage. If CONFIG_FOO is y or
m, the compiler will go ahead and build the foo.o object. In
this particular example, there is no foo.c file in the directory.
Therefore, Kbuild checks if a foo-y or foo-objs variable
is defined. This notation is enforced through Kbuild’s implicit
rules, and these composite objects also serve as lists of files

Fig. 2. Consistency among the three spaces

and directories. In this example, foo1.c and foo2.c will
be compiled into the foo.o object (Line 5), and will then be
included in the obj-y or obj-m list according to the value
of CONFIG_FOO (Line 4).

Executable Files: Special cases include executable files
that make creates on the host machine for use during
compilation [15]. These are part of the hostprogs-y
variable. In these cases, a fileName.c is indicated
as part of the executable files if it appears in an
entry such as hostprogs-y += fileName or
hostprogs-$(CONFIG_FEATURE) += fileName.
There are other special cases, and other lists in Kbuild (such
as head-y, lib-y, etc.). However, we only describe the
major parts of Kbuild here. For more information, we refer
the reader to the Kbuild Documentation [15].

IV. CONSISTENCY AMONG THE THREE SPACES

Figure 2 shows the three spaces responsible for implement-
ing variability in the Linux kernel: the configuration space,
the implementation space, and the compilation space. In order
for variability to be correctly implemented, each space must
be self-consistent, and the three spaces must be consistent
with each other. This yields six consistency checks. First
we have three self-consistencies of the three spaces: con-
figuration self-consistency, implementation self-consistency,
and compilation self-consistency. Then, we have the cross
consistencies between the three spaces: implementation-
configuration consistency, compilation-configuration consis-
tency, and implementation-compilation consistency.

Let us consider each of these one at a time. Configuration
self-consistency means that all Kconfig entries follow the
Kconfig syntax, that all references to a Kconfig entry have
a corresponding definition somewhere, and that dependen-
cies within one configuration definition are not contradictory.
Implementation self-consistency means that the constraints
imposed by preprocessor directives in the source code are not
self-contradictory. For example, a code block cannot depend
on a feature being defined and undefined at the same time.
Compilation self-consistency means that all composite objects
defined in a Makefile are actually used.

In terms of cross consistency between the spaces,
implementation-configuration consistency means that any

Anomaly Description
File Not Used A .c file exists in the directory but is not

used in the Makefile of that directory.
Feature Not Defined A .c file is referenced in the Makefile, and

its presence is conditioned on a Kconfig
feature being defined. However, this feature
is not defined in any of the Kconfig files.

Variable Not Used A .c file is referenced in the Makefile as part
of a composite variable definition, but this
variable is never used.

TABLE I
TYPES OF KBUILD ANOMALIES

Kconfig feature used in the source code must be defined in
the Kconfig files. Additionally, the dependency constraints
imposed in the Kconfig files must be consistent with those in
the code. Tartler et al. [22] explore the consistency between
these two spaces to identify dead and undead code blocks.

Compilation-configuration consistency requires that all
Kconfig features used in the Makefiles are defined in the Kcon-
fig files. Finally, the implementation-compilation consistency
means that all source files in the compilation space should be
used in the Makefiles in order to be compiled.

V. THE COMPILATION SPACE

The focus of this paper is the compilation space and the
Makefiles. Accordingly, we focus on three of the consistency
checks shown in Figure 2 that are relevant to the compilation
space: compilation self-consistency, compilation-configuration
consistency, and implementation-compilation consistency. Vio-
lating any of these three consistency checks results in a Kbuild
anomaly.

In this section, we present the rules we use to perform
these consistency checks, and the anomalies that result from
violating any of these rules. We define three consistency rules
whose violation results in three types of anomalies: File Not
Used anomaly, Feature Not Defined anomaly, and Variable
Not Used anomaly. These rules, which ensure that compilation
self-consistency, compilation-configuration consistency, and
implementation-compilation consistency are achieved, are as
follows:

1) Rule 1: In each directory, every fileName.c file
should have a corresponding fileName.o entry in the
Makefile of that directory.

2) Rule 2: If fileName.o is dependent (directly or
indirectly through a composite object) on some CONFIG
feature, then there should be a corresponding config
entry defined for this feature in one of the Kconfig files.

3) Rule 3: If fileName.o is part of a composite object
definition, then we must make sure that this composite
object gets used somewhere in that same Makefile.

File Not Used anomaly (Violation of Rule 1). We first
check that every .c file in the Linux source tree is used in
its corresponding directory’s Makefile. If this is not the case,
then this is a violation of the implementation-compilation
consistency. This violation will result in a File Not Used
anomaly.

Feature Not Defined anomaly (Violation of Rule 2).
Suppose we find that the file we are looking for is part of
an entry that is conditioned on a configuration feature. For
example, obj-$(CONFIG_FEATURE) += fileName.o.
Then, FEATURE must be defined as a config entry in one of
the Kconfig files. If this is not the case, then this is a violation
of the compilation-configuration consistency which leads to a
Feature Not Defined anomaly.

Variable Not Used anomaly (Violation of Rule 3).
Suppose we find that the file we are looking for is
part of a composite object entry (see Section III-B).
For example, variableName-y += fileName.o. In
this case, variableName is a composite object, and
variableName.o must be used somewhere in the Makefile.
If it is not used in the Makefile, this is a violation of the
compilation self-consistency, and will result in a Variable Not
Used anomaly.

Table I summarizes the three types of anomalies we detect.
We believe that the Variable Not Used and Feature Not Defined
anomalies indicate errors. For both these types of anomalies,
it seems clear that the developer intended for this file to be
included in the build process, but due to some error has not
setup things correctly, and forgot to use the composite variable
in the first case or forgot to define the Kconfig feature in the
second case. However, the File Not Referenced anomaly may
not necessarily indicate an error. Instead, it can be caused by a
developer intentionally ignoring to use a file because this file
is no longer needed, but is kept in the directory for reference
purposes.

Figure 3 illustrates the consistency rules through a simple
example. In this example, there are four files in the directory:
bar.c, foo1.c, foo2.c, and foobar.c, as drawn in
the left part of the figure. We look at the Makefile of that
directory, and check that all the .c files in the directory have
corresponding .o usages in the Makefile. For example, bar.c
has a corresponding entry bar.o in the Makefile, and it is
part of obj-y so we know it will be compiled as part of
the kernel (see Section III-B). In the case of foo1.c and
foo2.c, we can find corresponding .o entries, but they are
part of a composite object foo-y. We, therefore, need to
look for the usage of foo.o somewhere, and indeed we find
a usage of it in an obj-y entry. Finally, for foobar.c, its
corresponding foobar.o entry depends on a Kconfig feature,
CONFIG_FOOBAR. We, therefore, need to confirm that there
is indeed a config definition for FOOBAR in one of the
Kconfig files in the Linux source tree. If any of the arrows
shown in the diagram cannot be found, then an anomaly exists.

VI. RESULTS PART 1: FINDING KBUILD ANOMALIES IN A
LINUX KERNEL SNAPSHOT

In this section, we describe finding anomalies in a particular
release (a snapshot) of Linux. We first describe the details of
the release we used, and then present the results.

Fig. 3. Illustration of compilation space related consistency rules

Fig. 4. Kbuild anomalies detected in release 2.6.38.6 of the Linux kernel

A. Experiment Setup

We used the three rules described in Section V to detect
anomalies in the entire Linux source tree, specifically release
2.6.38.6. At the time we started this work, this was the latest
kernel release. Using the latest release allows us to identify
how many Kbuild anomalies currently exist in Linux. Release
2.6.38.6 consists of 2,249 directories, 15,680 .c files, 1,371
Makefiles, and over 10,000 Kconfig features. Most of the
directories containing source code have a Makefile that is
responsible for that directory. Directories that do not contain
source code files do not contain Makefiles. In rare cases (67
directories out of 2,249), a directory which contains source
code does not contain a Makefile. In these cases, the files
in this directory are referenced in the Makefile of the parent
directory. This does not seem like good practice, but these are
cases where the directory only has a few files, and developers
may feel it is easier to do it that way instead of creating another
Makefile for that directory.

B. Results

The anomaly detection on the entire 2.6.38.6 Linux source
tree took only 1.95 minutes on a Core i7 2.67 GHz with

8GB RAM. However, our technique can also be applied on a
per directory basis. That is, a developer can detect anomalies
only in the directory they are responsible for. In that case,
the analysis will just run in a few seconds, and the developer
does not have to wait for the full analysis of the whole source
tree. This will be convenient for developers to use before
committing their work.

Figure 4 summarizes the anomalies detected, grouped by
the major directories in the Linux kernel. The figure shows
that most of the anomalies were in the drivers and arch
directory. This is consistent with various related work on the
Linux kernel which find that the drivers directory contains
many inconsistencies, errors, and clones. Examples include the
work done by Tartler et al. [22] on inconsistencies between
the implementation and configuration spaces, the work done
by Li et al. on copy-paste bugs [11], and the work by Jiang and
Hassan on source code clones [7]. We now explain the results
we found in each of the three anomaly categories described
in Section V, and shown in Figure 4.

File Not Used

We found a total of 61 File Not Used anomalies, i.e., 61
.c files not mentioned in any of the Makefiles. The majority
of these files were in the arch and drivers directories.
Detecting the right number of files that have not been used in
the Makefiles was challenging at first. When we started, we
discovered over 300 files in this category. We later realized that
Linux does not follow the usual practice of not #include-ing
.c files. Therefore, before reporting a file as not used, we had
to first check if it is included in any other .c file which does
not have an anomaly. If it is, then we do not report this file as
having an anomaly since it will actually be indirectly included
in the built-in.o file through the #include directive.

We further investigated how often this scenario (including .c
files) occurs. There are a total of 563 .c files that include other
.c files. The same file can be included in multiple files. On
average, a .c file that is included by another .c file gets included
by 3 other .c files. By considering included .c files, we avoided

Directory Number of files
drivers/ 377
sound/ 100
arch/ 60
lib/ 12

kernel/ 6
fs/ 3

scripts/ 1
other 4
Total 563

TABLE II
NUMBER OF .C FILES INCLUDING OTHER .C FILES BY DIRECTORY (SORTED

IN DESCENDING ORDER)

erroneously reporting 198 .c files as not used. These files are
not explicitly used in the Makefiles, but they are included in
at least one other .c file that is used in the Makefile. Most files
including other .c files include files from the same directory
they are in. The included .c files usually contain code for
extended functionality that may be used by more than one file.
For example, the perf_event.c file in the arm/kernel/
directory includes the perf_event_v6.c file to add power
management specific implementations.

Table II shows the division of files that include other .c files
among the different directories. The drivers directory has
the most of these cases. Following that is the sound directory
which is more or less similar to the drivers in nature. This
indicates that the development pattern used for drivers (and
sound) might be different from other parts of the kernel in
that there is a lot of shared code.

While examining the files reported as not used, we also
found several files that seem to be left behind for reference pur-
poses or for ongoing maintenance. For example, some of the
files reported as not referenced included old_checksum.c,
dummy.c, and test.c. Their names indicate that they
are probably there for test purposes or as a copy of some
previously existing code.

Variable Not Used

We found that the Variable Not Used anomaly is rare. In
release 2.6.38.6, we found one such case. This case suggests
that mistakes of this nature, though rare, can happen. In
the directory arch/cris/arch-v32/mach-fs/, the
filename vcs_hook.c is found in the following line of the
Makefile
bj-$(CONFIG_ETRAX_VCS_SIM) += vcs_hook.o.
According to our rules, this means that there should be a
variable called bj used somewhere in the Makefile. However,
no such occurrence was found, and so it was reported as a
Variable Not Used anomaly. However, on closer inspection,
this looks like a typo where the line was intended to be
obj-$(CONFIG_ETRAX_VCS_SIM) += vcs_hook.o
(i.e., the o was forgotten). Detecting this category of anomalies
can help catch such spelling mistakes.

We submitted a patch for this, and it was accepted to be
released in the next version of the kernel. It is surprising that
this has remained undetected since 2007 (according to the

developer we communicated with). This indicates that these
types of anomalies may be hard to detect manually especially
when they do not break the system. However, they may cause
some functionality to be missing. In this particular case, the
code in the file vcs_hook.c was only used for development
purposes, and is not actually used in the “real world”.

Feature Not Defined

We found a total of 27 Feature Not Defined anomalies, i.e.,
27 features that were used in the Makefiles, but were not
defined in any of the Kconfig files. This means that in 27
different cases, there is some code that is expected to compile
when a certain feature is selected, but this code is actually
never compiled because the feature is not defined

It was also interesting that one of these undefined features,
CPU_S3C2400, appeared in a default and depends on
clause in a Kconfig file, but we could find no definition for it.
When there is no definition for a feature in Kconfig, then this
feature can never be selected. Additionally, any other feature
depending on it in any way will not be visible to the user
for selection in the configuration process, and will thus, in
turn, never be itself selected as well. This means that some of
the intended variability for this feature as well as all features
depending on it can never actually be used.

VII. RESULTS PART 2: FINDING KBUILD ANOMALIES IN
LONGITUDINAL STUDY

In this section, we analyze anomalies across a sequence of
releases of Linux in a longitudinal study. We first explain the
releases we used in our longitudinal study, and then present
the results we found.

A. Experiment Overview

The snapshot results in the previous section analyzed Kbuild
anomalies in a recent release. Our next step is to study whether
these anomalies persistently appear in the system, and whether
they get resolved or not. We, therefore, run our analysis over
a sequence of releases of Linux to observe this behavior.

In order to study the evolution of Kbuild anomalies, we
perform a longitudinal study across the last 14 main releases
of the Linux kernel. These releases span the period from July
17th, 2008 to May 19th, 2011 (approximately 3 years). The
time between releases is approximately two to three months.
Performing a longitudinal study provides us more insight into
Kbuild anomalies in two ways. First, it gives an indication of
the seriousness of the detected anomalies. If developers invest
time in fixing the detected anomalies between releases, then
this suggests that these anomalies are important. Second, it
helps us understand how often these anomalies occur. If they
occur frequently between releases, then this indicates the need
for an automatic Kbuild anomaly detection mechanism.

B. Results

Figure 5 shows the evolution of the number of Kbuild
anomalies over time. These are the main releases in the period
between July 2008 and May 2011. We omit the Variable

Fig. 5. Evolution of Kbuild anomalies over previous Linux releases

Not Used anomaly from the figure for better visualization
since there were only two instances of this type of anomaly
throughout all the releases studied. The figure shows that
previous kernel releases also contained Kbuild anomalies. We
can see that the File Not Used anomaly occurs more frequently
than the Feature Not Defined anomaly.

Given that previous releases also contained Kbuild anoma-
lies, we further investigate these anomalies to check the
number of introduced and fixed anomalies over time. Figure 6
shows the number of anomalies fixed in each release as
opposed to those introduced. Additionally, Figure 6 breaks
down the number of introduced and fixed anomalies by type.
The fact that several anomalies have been fixed suggests
that these anomalies were producing undesired behavior and
were worth fixing. The fact that new anomalies are still
introduced indicates the need for automatic error detection in
the Kbuild system. In order to understand the significance of
these anomalies further, we look at the types of fixes in detail.

In Figure 6, we can see that the File Not Used anomaly (in
light blue) has the most fixes (left columns). This makes sense
since the highest number of anomalies are in that category (see
Figure 5). In Figure 6, we can also see that there is a long
bar showing many introduced anomalies in release 2.6.35. We
can see from the breakdown that most of these introduced
anomalies were of type Feature Not Defined. Looking closer
at these anomalies, we found that all of the Feature Not
Defined anomalies introduced in that release (2.6.35) were
caused by the introduction of a new driver, msm, that is part of
the drivers/staging directory. The staging directory
contains driver code that has still not been accepted as part
of the main Linux source tree. Thus, it makes sense that
this directory would cause many anomalies. We believe that
automatically discovering these anomalies can help developers
have their drivers code accepted more quickly into the main
Linux source tree.

In order to understand how developers address the anoma-
lies we discovered, and how serious they are considered, we
looked at the solution implemented for each fixed anomaly.

File Not Used anomaly. We found that the File Not Used
anomaly represented on average 80% of the total anomalies
in each release. However, only an average of 9% of the File

Not Used anomalies in one release are fixed in the next
release. This suggests that although there are many anomalies
of this type, most of these anomalies are not particularly urgent
since only 9% of them actually get addressed in the next
release. Nonetheless, we cannot conclude that the File Not
Used anomaly is insignificant. In the releases we examined,
there was a total of 108 distinct File Not Used anomalies. By
the last release we examined (2.6.39), 78 of these anomalies
were actually addressed (i.e., approximately 74%). This shows
that although this type of anomaly does not get immediately
fixed, they generally eventually get addressed.

We found that there are three ways developers address the
File Not Used anomaly. They (1) remove that file from the
source tree (occurs 73% of the time), (2) add an entry for it
in the Makefile (occurs 22% of the time), or (3) include it in
another .c file that is used in the Makefile (occurs 5% of the
time). Since removing the file from the source tree seems to be
the most common solution, this suggests that most of the File
Not Used anomalies are indeed caused by lax maintenance
where code that is no longer needed is still left in the source
tree.

Feature Not Defined anomaly. We found that the Feature
Not Defined anomaly represented on average 16% of the total
anomalies in each release. On average, 12% of the Feature Not
Defined anomalies in one release were addressed in the next
release. This suggests that although there are less anomalies of
type Feature Not Defined, a higher percentage of them actually
get fixed immediately (i.e., within one release) when compared
to the File Not Used anomaly. We found that there are five
ways in which the Feature Not Defined anomalies are fixed:
(1) a config definition for that feature is added to one of
the Kconfig files (occurs 37% of the time), (2) the file that
depended on this feature has been removed so this feature
is no longer used in the Makefile (occurs 45% of the time),
(3) the file is moved to another directory which essentially
moves the anomaly from one directory to another (occurs 5%
of the time), (4) the file that depended on that feature no longer
depends on any feature so the feature is no longer used in the
Makefile (occurs 3% of the time), or (5) the file now depends
on a different feature which has a proper definition (occurs
10% of the time). Since developers add a definition for the
Kconfig feature being used 37% of the time, this suggests
that this anomaly was indeed an error that prevented required
variability from being achieved.

The results from the longitudinal study we performed con-
firm that developers invest time in fixing Kbuild anomalies.
Additionally, they show that new anomalies are introduced in
each release. This strongly suggests the need for automatic
anomaly detection.

VIII. THREATS TO VALIDITY

All of the anomalies detected by our tool in release 2.6.38.6
have been reviewed by hand through a grep-based search.
For the File Not Referenced anomalies, all the files reported
were confirmed as not used anywhere through the grep-
based search. For the Feature Not Defined anomaly, we also

Fig. 6. Breakdown of fixed and introduced anomalies by type over Linux releases. For each release, the left column shows fixed anomalies and the right
column shows introduced anomalies.

performed a grep-based search, and confirmed that there was
no config definition for any of these features in any Kconfig
file. Accordingly, we believe that our results contain a low rate
of false positives (possibly zero).

On the other hand, our analysis might have missed some
anomalies (i.e., false negatives). Currently, we do not consider
features used in conditional blocks in the Makefiles (e.g.,
ifdef CONFIG_FEATURE). Some of the features used in
such conditions may not be properly defined in the Kconfig
files, but will not be reported in our current analysis.

Since this work is a first attempt at discovering anomalies in
the Kbuild system, we believe that more consistency rules that
take additional aspects into consideration can be developed
as more research focuses on this problem. However, at this
stage, we believe that a more conservative reporting is better
than overwhelming the developer with many results which
may contain false positives. Therefore, we do not attempt to
generalize our findings in terms of the type of anomalies or
how they evolve to other systems. Such generalization requires
investigation of additional systems which we plan to do in the
future. Once we have examined additional systems, we can
achieve external validity for our results.

IX. RELATED WORK

Miller [16] addresses the concerns about the slow perfor-
mance of recursive make by providing guidelines of how to
correctly setup the Makefiles to obtain a more efficient build.
Jørgensen [8] also provides rules to ensure the correctness
and completeness of Makefiles in general. The rules ensure
that targets in Makefiles are correctly setup without circular
dependencies such that incremental recompilation will produce
the same result every time. While these papers and other
work (e.g., [1], [3]) focus on the correctness, efficiency, and
automatic generation of build scripts in general, our work
focuses on how build systems play a role in variability,
specifically in Linux’s build system (Kbuild).

Adams et al. [2] study the evolution of the Linux build
system, and observe that its growth is correlated to the source
code growth. However, such studies only correlate the rate of
evolution of the two spaces, but do not examine the details

of how they actually cooperate together to provide the final
product. Additionally, McIntosh et al. [14] find that although
build systems account for a small percentage of the files in
a project, they have a comparable churn rate to source code
which suggests that they are also likely to have defects.

Day [4] presents some shell scripts that look for undefined
and unused Kconfig features. However, these scripts do not
find the File Not Used and Variable Not Used anomalies.
Additionally, our work provides a more systematic approach to
finding anomalies in the Kbuild system by defining rules for
consistency among the three spaces. Apart from identifying
the anomalies, our work also analyzes their frequency of
occurrence, and how they get fixed.

There has been recent research examining Kconfig and the
Linux variability in general. Lotufo et al. [12], [13] studies
the evolution of the Linux kernel variability model. The
various versions of the Kconfig are compared in terms of their
complexity which is determined through three measures: size,
cohesion, and depth.

Sincero et al. [20] along with Tartler et al. [23] show that
there are problems that arise because parts of the kernel con-
figurations are kept in different places. They only look at the
configuration space (the Kconfig files), and the implementation
space (the actual C code), but do not consider the compilation
space. They define rules that check certain referential and
semantic conditions to ensure consistency between Kconfig
files and source code files. They use propositional logic to
encode the constraints of each space [22]. Code blocks that
cannot satisfy the constraints are identified as dead or undead.

The work presented in our paper is distinguished from re-
lated work in the literature in that we focus on the correctness
of Kbuild from a variability perspective, and how it relates to
other artifacts in the Linux kernel. We identify types of Kbuild
anomalies that affect the desired variability in the kernel, and
study how they evolve over time as well as how they get
resolved.

X. FUTURE WORK

A build system using make can be quite complex due to
the use of implicit rules and many conditional variables. The

Kbuild system makes full usage of these features. Therefore,
there may be anomalies that arise in the Kbuild system
from incorrect setup of environment variables or compilation
options. Such anomalies also affect the final software product
and are worth investigating. Additionally, we plan to explore
other build systems which also contribute to the variability of
their final software product.

In this paper, we attempted to show the significance of the
anomalies we detected and how they got addressed through
the longitudinal study. We plan to investigate this further by
looking at additional information from the developers’ commit
comments when addressing these anomalies. Additionally,
looking at user reported bugs that have been caused by the
anomalies we detected can also provide further insight of their
importance.

As an initial attempt at clarifying the internals of the Kbuild
system, and how variability is implemented in it, this paper
only focuses on syntax anomalies. The results of this work
can later be expanded to produce a recommender system
that developers can use while editing the Kbuild system to
automatically detect anomalies for them, and to guide them
through the corrections.

XI. CONCLUSIONS

This work is our first attempt at exploring the correctness
of variability implementation in the Linux Kbuild, which
has been largely ignored in previous work. Build systems in
general are important to study since they control what goes
into the final product. Any mistakes in them can alter the
behavior of the software system, and can remain undetected
for a long time. In this work, we studied the Makefiles in
the Kbuild system, and developed three rules for detecting
anomalies in them that may affect the desired variability of the
Linux kernel. Our rules include finding code files (.c files) that
have not been used in the Makefiles (File Not Used anomaly),
composite variables that are never used (Variable Not Used
anomaly), and Kconfig features that are used in the Makefiles
but are not defined in any Kconfig file (Feature Not Defined
anomaly).

We first ran our analysis on a snapshot of the Linux
kernel, specifically release 2.8.38.6, and discovered 61 missing
files, 1 unused composite variable (which turned out to be
a typo in the Makefile and has been acknowledged by the
developers), and 27 undefined Kconfig features. Additionally,
we performed a longitudinal study of the Kbuild anomalies
over 14 Linux releases, and evaluated the seriousness of these
anomalies as well as how they get fixed. We found that many
of the anomalies we detected get fixed in later releases which
indicates that they previously caused erroneous behavior.

We believe that these results are a first step towards ensuring
the correctness of the variability implementation in the Kbuild
system. In the future, additional rules can be developed to
discover more anomalies. Such work can be the basis of tools
for developers to automatically detect anomalies and suggest
solutions for them.

REFERENCES

[1] GNU Autoconf. Available at http://www.gnu.org/software/autoconf/.
[2] B. Adams, K. De Schutter, H. Tromp, and W. De Meuter. The evolution

of the Linux build system. Electronic Communications of the EASST,
8(0), 2008.

[3] G. Ammons. Grexmk: speeding up scripted builds. In Proceedings of
the 2006 International Workshop on Dynamic Systems Analysis, WODA
’06, pages 81–87, New York, NY, USA, 2006. ACM.

[4] R. Day. Kernel Cleanup. Technical report, 2009. Available at http:
//www.crashcourse.ca/wiki/index.php/Kernel cleanup.

[5] S. Feldman. Make–A program for maintaining computer programs.
Software: Practice and experience, 9(4):255–265, 1979.

[6] M. W. Godfrey and Q. Tu. Evolution in open source software: A case
study. In Proceerdings of IEEE International Conference on Software
Maintenance, Los Alamitos, CA, USA, 2000.

[7] Z. M. Jiang and A. Hassan. A framework for studying clones in
large software systems. In SCAM 2007: Proceedings of Seventh
IEEE International Working Conference on Source Code Analysis and
Manipulation, pages 203 –212, 2007.

[8] N. Jørgensen. Safeness of make-based incremental recompilation. In
FME 2002:Formal Methods–Getting IT Right, volume 2391 of Lecture
Notes in Computer Science, pages 126–145. Springer Berlin / Heidel-
berg, 2002.

[9] G. Kumfert and T. Epperly. Software in the DOE: The Hidden Overhead
of “The Build”. Technical report, Lawrence Livermore National Lab.,
2002.

[10] G. Kumfert and S. Ravnborg. Kernel configuration and building in Linux
2.5. Linux Symposium, pages 197–212, 2003.

[11] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: a tool for finding
copy-paste and related bugs in operating system code. In Proceedings
of the 6th conference on Symposium on Opearting Systems Design &
Implementation - Volume 6, pages 20–20, Berkeley, CA, USA, 2004.
USENIX Association.

[12] R. Lotufo. On the complexity of maintaining the linux kernel configura-
tion. Technical report, Electrical and Computer Engineering, University
of Waterloo, 2009.

[13] R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wasowski. Evolution
of the linux kernel variability model. In Software Product Lines: Going
Beyond, volume 6287 of Lecture Notes in Computer Science, pages 136–
150. Springer Berlin / Heidelberg, 2010.

[14] S. McIntosh, B. Adams, T. Nguyen, Y. Kamei, and A. Hassan. An Em-
pirical Study of Build Maintenance Effort. In ICSE 2011: Proceedings
of the 33rd Intl Conf. on Software Engineering. ACM Press, 2011.

[15] S. R. Michael Elizabeth Chastain, Kai Germaschewski and J. Engel-
hardt. Linux Kernel Makefiles. Technical report, 2011. Available at
/Documentation/Kbuild/makefiles.txt.

[16] P. Miller. Recursive make considered harmful. In AUUGN 1998:
Australian Unix User Group Newsletter, page 19(1):1425. 1998.

[17] R. M. Richard M. Stallman and P. D. Smith. The GNU Make Manual.
2010. Available at http://www.gnu.org/software/make/manual/.

[18] G. Robles, J. Gonzalez-Barahona, and J. Merelo. Beyond source code:
The importance of other artifacts in software development (a case study).
Journal of Systems and Software, 79(9):1233–1248, 2006.

[19] S. She, R. Lotufo, T. Berger, A. Wasowski, and K. Czarnecki. Variability
model of the linux kernel. In VaMoS 2010: Fourth International
Workshop on Variability Modeling of Software-intensive Systems, Linz,
Austria, 2010.

[20] J. Sincero, R. Tartler, C. Egger, W. Schröder-Preikschat, and
D. Lohmann. Facing the Linux 8000 Feature Nightmare. In EUROSYS
2010: Proceedings of the European Conference on Computer Systems.

[21] J. Sincero, R. Tartler, D. Lohmann, and W. Schröder-Preikschat. Efficient
extraction and analysis of preprocessor-based variability. In GPCE
’10: Proceedings of the ninth international conference on Generative
programming and component engineering, pages 33–42. ACM, 2010.

[22] R. Tartler, D. Lohmann, J. Sincero, and W. Schröder-Preikschat. Feature
Consistency in Compile-Time Configurable System Software. In E. C.
of ACM SIGOPS, editor, EuroSys ’11: Proceedings of the EuroSys 2011
Conference , 2011.

[23] R. Tartler, J. Sincero, W. Schroder-Preikschat, and D. Lohmann. Dead
or alive: finding zombie features in the linux kernel. In Proceedings of
the First International Workshop on Feature-Oriented Software Devel-
opment, pages 81–86. ACM, 2009.

