
An Empirical Evaluation of GitHub Copilot’s Code Suggestions
Nhan Nguyen and Sarah Nadi

University of Alberta
Edmonton, AB, Canada

{nhnguyen,nadi}@ualberta.ca

ABSTRACT
GitHub and OpenAI recently launched Copilot, an “AI pair pro-
grammer” that utilizes the power of Natural Language Processing,
Static Analysis, Code Synthesis, and Artificial Intelligence. Given a
natural language description of the target functionality, Copilot can
generate corresponding code in several programming languages. In
this paper, we perform an empirical study to evaluate the correct-
ness and understandability of Copilot’s suggested code. We use 33
LeetCode questions to create queries for Copilot in four different
programming languages. We evaluate the correctness of the cor-
responding 132 Copilot solutions by running LeetCode’s provided
tests, and evaluate understandability using SonarQube’s cyclomatic
complexity and cognitive complexity metrics. We find that Copilot’s
Java suggestions have the highest correctness score (57%) while
JavaScript is the lowest (27%). Overall, Copilot’s suggestions have
low complexity with no notable differences between the program-
ming languages. We also find some potential Copilot shortcomings,
such as generating code that can be further simplified and code
that relies on undefined helper methods.

CCS CONCEPTS
• Software and its engineering → Integrated and visual de-
velopment environments; Reusability.

KEYWORDS
Program Synthesis, Codex, GitHub Copilot, Empirical Evaluation

ACM Reference Format:
Nhan Nguyen and Sarah Nadi. 2022. An Empirical Evaluation of GitHub
Copilot’s Code Suggestions. In 19th International Conference on Mining
Software Repositories (MSR ’22), May 23–24, 2022, Pittsburgh, PA, USA. ACM,
New York, NY, USA, 5 pages. https://doi.org/10.1145/3524842.3528470

1 INTRODUCTION
There has been lots of research dedicated to improving developer
productivity through code synthesis, code search, or other types
of code recommender systems [2, 4, 20, 25]. Many of these ef-
forts leverage Artificial Intelligence, specifically deep learning tech-
niques [3, 5, 12, 32]. In June 2021, GitHub and OpenAI introduced
GitHub Copilot, an “AI pair programmer” for Visual Studio Code,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9303-4/22/05. . . $15.00
https://doi.org/10.1145/3524842.3528470

Neovim, and JetBrains IDEs[11]. Powered by the large-scale Ope-
nAI Codex model, which was trained on open-source GitHub code,
Copilot can suggest code snippets in different programming lan-
guages [11]. While there have been lots of similar research efforts
[12, 14, 31], the seamless integration and availability of Copilot,
along with GitHub’s backup, naturally created a “hype” in the tech
world with many developers already using it through its techni-
cal preview or awaiting its usage [1, 21]. However, as pointed by
GitHub, Copilot’s suggestions “may not always work, or even make
sense” [11]. Thus, it is important to assess the correctness and
quality of Copilot’s suggestions to provide better insights into the
overall performance of the tool.

This paper contributes an empirical assessment of GitHub Copi-
lot’s capabilities. The insights gained from such a study can help
developers understand how to best use Copilot as well as provide
insights to Copilot’s team and other researchers in this area. We
specifically focus on Copilot’s synthesized code suggestions, given
a natural language description, and answer the following research
questions: RQ1: How correct are Copilot’s code suggestions? and
RQ2: How understandable is the code provided by Copilot?

To evaluate the correctness of Copilot’s suggestions, we use
LeetCode[18], a question pool website, which provides us with the
context needed to create Copilot queries (function name, param-
eters, input, and output of the function) as well as test cases that
we can use to evaluate correctness of the suggestions. LeetCode
questions come with test cases in various programming languages,
allowing us to assess the correctness of Copilot’s suggestions in 4
different languages (Python, Java, JavaScript, and C). While Copilot
produces a ranked list of suggestions, we focus on evaluating its
first suggested code snippet. To evaluate the understandability of
Copilot’s suggestions, we use SonarQube[28] to calculate cogni-
tive complexity and cyclomatic complexity, which been shown to
positively correlate with code understandability [9].

Overall, we evaluate Copilot on 33 LeetCode questions in four
different languages, totaling 132 queries. Out of Copilot’s 132 sug-
gestions, our results show that Java suggestions have the highest
likelihood to be correct. Specifically, 57% of Copilot’s first Java sug-
gestions pass all the test cases from LeetCode. On the other hand,
JavaScript suggestions have the lowest correctness score (27%) and
C suggestions have the highest rate of compilation errors (24%). In
many of the remaining cases, Copilot suggests a partially correct
solution that passes some of the test cases. Overall, we find that
Copilot will help the developer completely solve their programming
task or provide them with a useful point in 61%-91% of the time,
depending on the language.

In terms of understandability, we evaluate Copilot’s solutions
for only three of the languages, Java, JavaScript, and Python (total
of 99 solutions). We find that Copilot’s suggestions have low cyclo-
matic and cognitive complexity (median 5 and 6, respectively), and

https://doi.org/10.1145/3524842.3528470
https://doi.org/10.1145/3524842.3528470

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Nhan Nguyen and Sarah Nadi

(a) Copilot query context

(b) Copilot complete function suggestions

Figure 1: Example of Copilot query context and suggestions
that there is no statistically significant difference between these
languages. We share all data, scripts, and results of our study [23].

2 BACKGROUND AND TERMINOLOGY
GitHub Copilot. Copilot currently offers three main functionali-

ties: convert comments to code, suggest tests matching implemen-
tation code, and autofill for repetitive code [11]. We focus on the
first functionality, converting comments to code, which is triggered
by a user writing a comment to describe the logic they want to
implement [11]. While providing only a natural language comment
is enough to trigger a Copilot suggestion, it is recommended that
users provide meaningful names for functions parameters as well
as descriptive comments to get meaningful recommendations [11].
We refer to the combination of natural language comment, function
name, and function parameters as the query context.

Figure 1a shows an example of using Copilot. Lines 2 to 7 contain
the query context, consisting of the function name, parameters, and
a natural language problem description. On Line 8, Copilot shows its
suggestion for the next line of code. Users can also view suggestions
for the entire function by clicking Ctrl + Enter where Copilot will
display a number of different suggestions, as shown in Figure 1b.

LeetCode. LeetCode is a popular Question Pool website (QP)[30].
Such websites provide various coding questions on different topics
(array, algorithm, sorting, etc) along with corresponding tests to
check correctness. Most importantly for our empirical study, each of
these LeetCode coding questions contains the relevant information
to compose good query contexts for Copilot, following GiHub’s rec-
ommendations described above. LeetCode also provides a publicly
available API to fetch submission details. [10, 13, 26].

Figure 2a shows an example LeetCode question, named Longest
Increasing Path in a Matrix[16]. The question contains information
like the input (m x n integers matrix), the expected output (the

(a) Question description

(b) Question’s coding environment

(c) Question’s submission history

Figure 2: An example LeetCode question, named Longest
Increasing Path in a Matrix [16]

length of the longest increasing path in a matrix), and any assump-
tions (no wrap-around). Each question also comes with a coding en-
vironment to submit solutions, shown in Figure 2b. This coding en-
vironment contains the function name (longestIncreasingPath)
and parameters (self, matrix) with clear details into the type of
each parameter. All this information corresponds to the attributes
that compose a good query context for Copilot, shown in Figure 1a.

LeetCode’s coding environment also contains a set of test cases
in multiple programming languages. Figure 2b shows the Python
coding environment for testing a submission against LeetCode’s
predefined set of test cases. The availability of test cases for each
query allows us to measure the behavioral correctness of Copi-
lot’s suggestions. LeetCode’s tests also ensure that submitted code
snippets “meet various time and space restrictions and pass corner
cases” for the given problem [17]. Users are also able to see a history
of their submission status for the current coding problem and any
past code solutions submitted for the same question, as shown in
Figure 2c. The possible statuses are:
• Accepted: submitted code passes all test cases
• Wrong Answer: submitted code has no errors, but its output is
different from the expected output for at least one test case.

• Compile Error : submitted code cannot be compiled.
• Time Limit Exceed: submitted code has no errors, but at least one
test case exceeds permitted execution time.

• Runtime Error : submitted code has at least one test case that fails
due to errors during execution (i.e. division by zero, etc)

SonarQube and UnderstandabilityMetrics. Dantas et al. [9] showed
that cognitive complexity and cyclomatic complexity can be used
as proxy metrics for measuring the understandability of a code
snippet. The authors use SonarQube [29], an open-source platform
for statically analyzing code, to calculate both metrics. To calculate
cyclomatic complexity, SonarQube starts with a value of 1 and in-
crements by one whenever it detects a split in the control flow of a
function [29]. Essentially, a higher cyclomatic complexity implies

An Empirical Evaluation of GitHub Copilot’s Code Suggestions MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

more branching in the code and the need for more test cases to
fully cover a method [6]. While cognitive complexity also mea-
sures understandability, it relies less on mathematical models that
analyze control flow and instead uses rules that map into a program-
mer’s intuition of how they understand code [7]. Specifically, to
measure cognitive complexity, SonarQube does not increment the
complexity score when shorthands are used (e.g., using a ternary
expression would not increase the complexity score), increments
the score only once for each break in the linear flow of the code
(e.g., a whole switch statement would increment the score by 1
since it can often be taken in with one glance), and increments the
score when flow-breaking structures are nested [7].

3 EMPIRICAL STUDY SETUP
We now explain how we assess Copilot’s synthesized code sugges-
tions when provided with good query context.

Step 1: Gather Prerequisites and Generate Queries: We randomly
select 33 LeetCode questions with varying difficulty levels (4 easy,
17 medium, and 12 hard). Using LeetCode’s data (see Section 2), we
manually extract the necessary information to build good query
contexts for each question: function name, parameters, input, out-
put, and comment. We then pass this information to a custom-built
script that creates a separate code file for each of Python, Java,
JavaScript, and C. Overall, we create 132 code files in 4 languages.

Step 2: Acquire Copilot Suggestions:Given the lack of Copilot APIs,
we perform Step 2 manually. We include the code files from Step 1
into VSCode projects, manually invoke Copilot for each query, and
save the top complete function suggestion. Note that Copilot uses
the provided information in the file and project to construct its own
internal context, but the exact details are not publicly shared [11].

Step 3: Evaluate Correctness: For each of the 132 suggestions col-
lected from Step 2, we manually fill LeetCode’s coding environment
for the corresponding question (see Section 2) with the Copilot’s
suggested code and submit it to LeetCode to run against its test
cases. We then use LeetCode’s API to automatically extract the sub-
mission results in JSON format, which include the programming
language of the solution, the submission status, and the submitted
code snippet. We create a Python script to analyze these JSON files
and report the necessary statistics for our research questions.

Step 4: Evaluate Understandability: We run SonarQube on all
132 collected files, which now contain Copilot’s solutions. Unfortu-
nately, we were not able to run SonarQube on the C code snippets
because of various configuration issues that prevented SonarQube
from being able to analyze the code. Thus, we report understand-
ability scores for only 99 solutions in Java, JavaScript, and Python.

4 EMPIRICAL RESULTS
4.1 RQ1: Are Copilot’s code suggestions correct?

Results. Table 1 shows each LeetCode question, number of test
cases available for that question, and how many tests the Copilot
solution passes. At the bottom of the table, we show statistics of
the LeetCode solution status (partially correct explained later).

Overall, in 23/33 questions (70%), shown in bold in Table 1, Copi-
lot produces an accepted solution for at least one language. Per
language, 14 (42%), 19 (57%), 9 (27%), and 13 (39%) of Copilot solu-
tions for Python, Java, JavaScript, and C respectively are accepted

Table 1: Correctness of GitHub Copilot’s suggestions for each
LeetCode question and overall submission status.

Question # Tests
Number (%) test cases passed

Python Java JavaScript C

Ea
sy

Q1 57 57 (100%) 57 (100%) 57 (100%) 57 (100%)
Q2 14 14 (100%) 14 (100%) 14 (100%) 14 (100%)
Q3 34 34 (100%) 34 (100%) 34 (100%) 34 (100%)
Q4 15 15 (100%) 15 (100%) 15 (100%) 15 (100%)

M
ed

iu
m

Q5 81 50 (62%) 12 (15%) 6 (7%) 50 (62%)
Q6 596 596 (100%) 596 (100%) 0 (0%) 0 (0%)
Q7 85 82 (96%) 85 (100%) 6(7%) 0 (0%)
Q8 58 57 (98%) 47 (81%) 58 (100%) 58 (100%)
Q9 116 114 (98%) 116 (100%) 0 (0%) 116 (100%)
Q10 58 58 (100%) 58 (100%) 14 (24%) 10 (17%)
Q11 54 54 (100%) 54 (100%) 0 (0%) 54 (100%)
Q12 49 42 (85%) 49 (100%) 49 (100%) 24 (48%)
Q13 47 47 (100%) 46 (98%) 11 (23%) 0 (0%)
Q14 50 17 (34%) 50 (100%) 50 (100%) 50 (100%)
Q15 202 202 (100%) 202 (100%) 202 (100%) 202 (100%)
Q16 15 15 (100%) 15 (100%) 0 (0%) 14 (93%)
Q17 188 188 (100%) 188 (100%) 36 (19%) 0 (0%)
Q18 9 2 (22%) 0 (0%) 0 (0%) 9 (100%)
Q19 57 0 (0%) 34 (59%) 0 (0%) 0 (0%)
Q20 210 110 (52%) 19 (9%) 110 (52%) 0 (0%)
Q21 15 10 (66%) 10 (66%) 0 (0%) 10 (66%)

H
ar
d

Q22 84 83 (98%) 0 (0%) 84 (100%) 0 (0%)
Q23 17 17 (100%) 17 (100%) 0 (0%) 17 (100%)
Q24 64 64 (100%) 64 (100%) 3 (5%) 60 (93%)
Q25 70 70 (100%) 0 (0%) 0 (0%) 0 (0%)
Q26 30 0 (0%) 30 (100%) 0 (0%) 30 (100%)
Q27 38 0 (0%) 38 (100%) 35 (92%) 38 (100%)
Q28 39 1 (2%) 14 (35%) 26 (66%) 2 (5%)
Q29 138 0 (0%) 138 (100%) 0 (0%) 0 (0%)
Q30 51 24 (47%) 26 (50%) 0 (0%) 28 (54%)
Q31 49 0 (0%) 39 (79%) 7 (14%) 0 (0%)
Q32 44 0 (0%) 27 (61%) 0 (0%) 0 (0%)
Q33 101 10 (9%) 10 (9%) 7 (6%) 5 (4%)

Accepted 14 (42%) 19 (57%) 9 (27%) 13 (39%)
Wrong answer 12 (36%) 12 (36%) 12 (36%) 8 (24%)
Time limit exceeded 2 (6%) 1 (3%) 1 (3%) 1 (3%)
Compile errors 0 (0%) 0 (0%) 0 (0%) 8 (24%)
Runtime errors 5 (15%) 1 (3%) 11 (33%) 3 (9%)

Partially correct 13 (39%) 11 (33%) 11 (33%) 9 (27%)

(i.e., pass all tests). We find that Copilot solutions rarely exceeded
LeetCode’s time limit and that compilation errors occur only in
8/33 (24%) of the C solutions, but in none of the Java solutions. Note
that Python and JavaScript are not compiled languages so their
code will naturally not result in any compilation error. With the
exception of JavaScript solutions (33%), runtime errors are also not
that frequent.

To collect more insights, we analyze Copilot’s suggestions for
Q29 (Longest Increasing Path in a Matrix) where only the Java
solution is accepted. Figure 2a shows Q29’s description; a simple
solution is to run depth-first search (dfs) on each cell of the ma-
trix and then return the length of the longest increasing path in
the matrix. Copilot’s solutions in Java, JavaScript, and Python all
follow this approach and use a helper function dfs. However, only
the Java solution contains dfs’ implementation, causing JavaScript
and Python solutions to fail at runtime. The examples provided on
Copilot’s homepage [11] suggest that it generates code for only

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Nhan Nguyen and Sarah Nadi

one function at a time. We contacted Copilot’s team and confirmed
that Copilot’s suggestions should not include the implementation
of helper functions. Thus, the produced Java dfs implementation is
actually unexpected Copilot behavior. Finally, Copilot’s C solution
for this question contains an undefined variable compilation error,
and the tests were not run. Overall, this example suggests that Copi-
lot may generate code that relies on non-existing helper functions
or that contains undefined variables, both of which would result in
compile or run-time errors, depending on the language.

Implications. GitHub’s internal evaluation of Copilot Python sug-
gestions shows that Copilot achieved 43% correctness on the first
try [11], which is similar to our Python results (42%). Overall, our
findings suggest that Copilot’s first solution is often fully correct at
least 27% of the time for JavaScript, and as high as 57% of the time for
Java. If we consider any solution that passed some test cases, regard-
less of final LeetCode status, as partially correct (bottom of Table 1),
then Copilot also suggests a good starting point for an additional
27%-39% of the queries, depending on the programming language.
Thus, overall, Copilot will help the developer completely solve their
programming task (accepted) or provide them with a useful starting
point (partially correct) in 61%-91% of the time, depending on the
language. In their FAQs, GitHub mentions JavaScript, Python, and
Java as three of the languages Copilot does particularly well on
[11]. While C is not mentioned among these languages, we find
that Copilot was still able to provide a fully correct solution or a
starting point in 67% of the queries.

RQ1 Summary: Copilot’s correctness (passing all tests) varies by
language, with Java as highest (57%) and JavaScript lowest (27%).

4.2 RQ2: How understandable is the code
provided by GitHub Copilot?

Results. Figure 3 shows the cyclomatic and cognitive complexity
of Python, Java, and JavaScript Copilot solutions. We find that the
median cyclomatic and cognitive complexity for the solutions in
all three languages is the same (5 and 6 respectively). We also run
a Wilcoxon paired signed rank test to compare the distribution of
complexity values per solution and find no statistical difference
between any of the languages. The only difference we observe is
that JavaScript has no outlier values for cyclomatic complexity and
only one for cognitive complexity, as opposed to two in the other
languages. We discuss one outlier example below.

The Python solution with the highest reported cyclomatic com-
plexity of 43 and cognitive complexity of 42 corresponds to Q14
(Integer Break). Q14’s description is “Given an integer n, break it
into the sum of k positive integers, where k >= 2, and maximize the
product of those integers [...]” [15]. Interestingly, the JavaScript and
Java solutions for Q14 have much lower cyclomatic and cognitive
complexities, 4 and 3 respectively. In Python, Copilot produced a
solution with 43 if statements for input numbers 2 to 43 and their
corresponding return values. In contrast, for JavaScript and Java,
there were only base cases for inputs 2 and 3, followed by a loop for
all inputs greater than 4. Both JavaScript and Java solutions passed
all 50 test cases, while the Python solution passed only 17/50 tests.

Python Java JavaScript

0

10

20

30

40
Cyclomatic
Cognitive

Figure 3: Cyclomatic and Cognitive Complexity Results

Implications. Copilot generally produces understandable code.
The median complexity values of Copilot’s solutions are well below
the 15-25 thresholds typically used in static analysis tools [22].
Overall, there are only two questions where Copilot suggests code,
in any of the languages, with either complexity metrics above 15.
On the other side, while our data is not enough for us to draw
general conclusions, the example outlier we investigated suggests
that Copilot does not always generate the most compact code for a
given problem. This likely depends on training data quality.

RQ2 Summary: The median cognitive complexity and cyclomatic
complexity of Copilot solutions is 6 and 5, respectively, with no
statistically significant differences between languages.

5 LIMITATIONS AND THREATS TO VALIDITY
Given the need to manually query Copilot, our study is limited to
only 33 queries. However, we run these queries in four program-
ming languages, resulting in 132 queries. Copilot is closed-source
and we cannot map our results to the details or characteristics of
Copilot’s internal model. We also do not know Copilot’s exact train-
ing data, which means we cannot determine if the exact solutions
to our queries already exist in the data. We focus only on Copilot’s
functionality of converting comments to code. Our results also show
Copilot’s suggestions in the “best case”, given our ideal query con-
texts. Future work is needed to study Copilot’s behavior in less ideal
situations and to assess its other capabilities. For reproducibility,
we archive all Copilot’s suggestions we received [23].

LeetCode stops execution at the first failed test case. Thus, the
number of passed tests in Table 1 present a lower bound in some
cases. However, this does not affect the overall status of the solu-
tion or the conclusions we draw from our study. We calculate the
complexity metrics for all Copilot suggestions, including those with
errors. However, this allows us to assess understandability of all
suggestions a developer would see.

6 RELATEDWORK
Since GitHub Copilot was just recently released, there have not
been many studies into the tool. To the best of our knowledge, there
are only two (publicly available) direct studies of Copilot sugges-
tions. The first by Pearce et al. [24] examines the security issues in
code generated by Copilot based on queries created from the 25 top
CWE vulnerabilities with a total of 89 scenarios. In our work, we

An Empirical Evaluation of GitHub Copilot’s Code Suggestions MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

focus on evaluating the correctness and understandability of Copi-
lot’s suggestions and do not study security issues. The second study
is by Sobania et al. [27] who compare Copilot’s program synthesis
performance with genetic programming based on a genetic pro-
gramming benchmark of 29 problems. The authors also use tests as
a means to evaluate correctness. However, their study focuses only
on Python and considers Copilot alternative suggestions. Our work
evaluates Copilot’s first suggestion for 33 programming problems
in four different languages (132 total queries).

While there is a lot of work on code synthesis and code search
using deep learning (e.g., [3–5, 8, 12, 14, 19, 32]), we do not dive into
the specifics here since we focus on evaluating Copilot’s capabilities
while treating it as a black box. We note that the recent work by
Chen et al. [8] evaluates the capabilities of Codex, a GPT language
model trained on GitHub code to produce code given a natural
language description. Copilot is powered by a distinct production
version of Codex. In this paper, our goal is to evaluate Copilot itself
as currently presented to developers.

7 CONCLUSIONS
In this paper, we presented an empirical study of the correctness and
understandability of GitHub Copilot’s synthesized code solutions
based on 33 LeetCode questions.We evaluated Copilot’s suggestions
in Java, JavaScript, Python, and C. Our Python results are similar
to GitHub’s internal evaluation of Copilot [11]. Overall, we find
that Copilot’s Java suggestions have the highest correctness score
(57%) while JavaScript is lowest (27%). Copilot’s suggestions also
have low complexity with no statistically significant differences
between the complexity scores of the same solution in different
languages. We also find some potential Copilot shortcomings, such
as generating code that can be further simplified/compacted and
code that relies on undefined helper methods.

8 ACKNOWLEDGMENTS
This research was undertaken, in part, thanks to funding from the
Canada Research Chairs Program. We would also like to thank Max
Schaefer for his feedback on earlier drafts of this work.

REFERENCES
[1] Romaana Aamir. 2021. GitHub copilot-bright future or an impending

doom. https://code.likeagirl.io/github-copilot-bright-future-or-an-impending-
doom-df0f1674a50c

[2] Miltiadis Allamanis, Earl T Barr, Premkumar Devanbu, and Charles Sutton. 2018.
A survey of machine learning for big code and naturalness. ACM Computing
Surveys (CSUR) 51, 4 (2018), 1–37.

[3] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learn-
ing distributed representations of code. Proceedings of the ACM on Programming
Languages 3, POPL (2019), 1–29.

[4] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk
Michalewski, David Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le,
and Charles Sutton. 2021. Program Synthesis with Large Language Models.
arXiv:2108.07732 [cs.PL]

[5] Jose Cambronero, Hongyu Li, Seohyun Kim, Koushik Sen, and Satish Chandra.
2019. When deep learning met code search. In Proceedings of the 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 964–974.

[6] G. Ann Campbell. 2018. Cognitive Complexity: An Overview and Evaluation. In
Proceedings of the 2018 International Conference on Technical Debt (Gothenburg,
Sweden) (TechDebt ’18). Association for Computing Machinery, New York, NY,
USA, 57–58. https://doi.org/10.1145/3194164.3194186

[7] G. Ann Campbell. 2021. Cognitive complexity - A new way of measuring under-
standability. https://www.sonarsource.com/docs/CognitiveComplexity.pdf

[8] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de
Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf,
Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex
Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shan-
tanu Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Josh
Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei,
Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating Large
Language Models Trained on Code. arXiv:2107.03374 [cs.LG]

[9] Carlos Eduardo de Carvalho Dantas andMarcelo de AlmeidaMaia. 2021. Readabil-
ity and Understandability Scores for Snippet Assessment: an Exploratory Study.
CoRR abs/2108.09181 (2021). arXiv:2108.09181 https://arxiv.org/abs/2108.09181

[10] fabasoad and Sachin131. 2016. Is there public API endpoints available for leet-
code? https://leetcode.com/discuss/general-discussion/1297705/is-there-public-
api-endpoints-available-for-leetcode

[11] GitHub. 2021. GitHub Copilot · Your AI pair programmer. https://copilot.github.
com/

[12] Xiaodong Gu, Hongyu Zhang, and Sunghun Kim. 2018. Deep Code Search. In
2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE).
933–944. https://doi.org/10.1145/3180155.3180167

[13] HackerRank. [n.d.]. HackerRank for Work API. https://www.hackerrank.com/
work/apidocs#

[14] Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu.
2012. On the naturalness of software. In 2012 34th International Conference on
Software Engineering (ICSE). 837–847. https://doi.org/10.1109/ICSE.2012.6227135

[15] LeetCode. [n.d.]. Integer Break. https://leetcode.com/problems/integer-break/
[16] LeetCode. [n.d.]. Longest Increasing Path in a Matrix. https://leetcode.com/

problems/longest-increasing-path-in-a-matrix
[17] LeetCode. 2019. Start your coding practice –. https://support.leetcode.com/hc/en-

us/articles/360012016874-Start-your-Coding-Practice
[18] LeetCode. 2021. The world’s leading online programming learning platform.

https://leetcode.com/
[19] Jian Li, Yue Wang, Michael R. Lyu, and Irwin King. 2018. Code Completion with

Neural Attention and Pointer Networks. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI-18. International
Joint Conferences on Artificial Intelligence Organization, 4159–4165. https:
//doi.org/10.24963/ijcai.2018/578

[20] Sifei Luan, Di Yang, Celeste Barnaby, Koushik Sen, and Satish Chandra. 2019.
Aroma: Code recommendation via structural code search. Proceedings of the ACM
on Programming Languages 3, OOPSLA (2019), 1–28.

[21] Matthew MacDonald. 2021. GitHub copilot: Fatally flawed or the future of soft-
ware development? https://medium.com/young-coder/github-copilot-fatally-
flawed-or-the-future-of-software-development-390c30afbc97

[22] Gerald Mücke and G Ann Campbell. 2021. How to use cognitive complex-
ity? https://community.sonarsource.com/t/how-to-use-cognitive-complexity/
1894/7

[23] Nhan Nguyen and Sarah Nadi. 2022. Online artifact for MSR 2022 Submission
“An Empirical Evaluation of GitHub Copilot’s Code Suggestions”. https://doi.
org/10.6084/m9.figshare.18515141

[24] Hammond Pearce, Baleegh Ahmad, Benjamin Tan, Brendan Dolan-Gavitt, and
Ramesh Karri. 2021. Asleep at the Keyboard? Assessing the Security of GitHub
Copilot’s Code Contributions. arXiv:2108.09293 [cs.CR]

[25] Martin Robillard, Robert Walker, and Thomas Zimmermann. 2009. Recommen-
dation systems for software engineering. IEEE software 27, 4 (2009), 80–86.

[26] Swapnil Rustagi and Jagga Jasoos. 2019. Access to CodeChef API. https:
//discuss.codechef.com/t/access-to-codechef-api/27308

[27] Dominik Sobania, Martin Briesch, and Franz Rothlauf. 2021. Choose Your Pro-
gramming Copilot: A Comparison of the Program Synthesis Performance of
GitHub Copilot and Genetic Programming. arXiv:2111.07875 [cs.SE]

[28] SonarQube. 2021. Code quality and code security. https://www.sonarqube.org/
[29] SonarQube. 2021. Metric definitions. https://docs.sonarqube.org/latest/user-

guide/metric-definitions/
[30] Meng Xia, Mingfei Sun, Huan Wei, Qing Chen, Yong Wang, Lei Shi, Huamin Qu,

and Xiaojuan Ma. 2019. PeerLens: Peer-Inspired Interactive Learning Path Planning
in Online Question Pool. Association for Computing Machinery, New York, NY,
USA, 1–12. https://doi.org/10.1145/3290605.3300864

[31] Ziyu Yao, Jayavardhan Reddy Peddamail, and Huan Sun. 2019. CoaCor: Code
Annotation for Code Retrieval with Reinforcement Learning. In The World Wide
Web Conference (San Francisco, CA, USA) (WWW ’19). Association for Computing
Machinery, New York, NY, USA, 2203–2214. https://doi.org/10.1145/3308558.
3313632

[32] Qihao Zhu and Wenjie Zhang. 2021. Code Generation Based on Deep Learning:
a Brief Review. arXiv:2106.08253 [cs.SE]

https://code.likeagirl.io/github-copilot-bright-future-or-an-impending-doom-df0f1674a50c
https://code.likeagirl.io/github-copilot-bright-future-or-an-impending-doom-df0f1674a50c
https://arxiv.org/abs/2108.07732
https://doi.org/10.1145/3194164.3194186
https://www.sonarsource.com/docs/CognitiveComplexity.pdf
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2108.09181
https://arxiv.org/abs/2108.09181
https://leetcode.com/discuss/general-discussion/1297705/is-there-public-api-endpoints-available-for-leetcode
https://leetcode.com/discuss/general-discussion/1297705/is-there-public-api-endpoints-available-for-leetcode
https://copilot.github.com/
https://copilot.github.com/
https://doi.org/10.1145/3180155.3180167
https://www.hackerrank.com/work/apidocs#
https://www.hackerrank.com/work/apidocs#
https://doi.org/10.1109/ICSE.2012.6227135
https://leetcode.com/problems/integer-break/
https://leetcode.com/problems/longest-increasing-path-in-a-matrix
https://leetcode.com/problems/longest-increasing-path-in-a-matrix
https://support.leetcode.com/hc/en-us/articles/360012016874-Start-your-Coding-Practice
https://support.leetcode.com/hc/en-us/articles/360012016874-Start-your-Coding-Practice
https://leetcode.com/
https://doi.org/10.24963/ijcai.2018/578
https://doi.org/10.24963/ijcai.2018/578
https://medium.com/young-coder/github-copilot-fatally-flawed-or-the-future-of-software-development-390c30afbc97
https://medium.com/young-coder/github-copilot-fatally-flawed-or-the-future-of-software-development-390c30afbc97
https://community.sonarsource.com/t/how-to-use-cognitive-complexity/1894/7
https://community.sonarsource.com/t/how-to-use-cognitive-complexity/1894/7
https://doi.org/10.6084/m9.figshare.18515141
https://doi.org/10.6084/m9.figshare.18515141
https://arxiv.org/abs/2108.09293
https://discuss.codechef.com/t/access-to-codechef-api/27308
https://discuss.codechef.com/t/access-to-codechef-api/27308
https://arxiv.org/abs/2111.07875
https://www.sonarqube.org/
https://docs.sonarqube.org/latest/user-guide/metric-definitions/
https://docs.sonarqube.org/latest/user-guide/metric-definitions/
https://doi.org/10.1145/3290605.3300864
https://doi.org/10.1145/3308558.3313632
https://doi.org/10.1145/3308558.3313632
https://arxiv.org/abs/2106.08253

	Abstract
	1 Introduction
	2 Background and Terminology
	3 Empirical Study Setup
	4 Empirical Results
	4.1 RQ1: Are Copilot's code suggestions correct?
	4.2 RQ2: How understandable is the code provided by GitHub Copilot?

	5 Limitations and Threats To Validity
	6 Related Work
	7 Conclusions
	8 Acknowledgments
	References

