
Challenges of Implementing Software Variability in
Eclipse OMR: An Interview Study
Batyr Nuryyev, Sarah Nadi

University of Alberta, Edmonton, Canada
{nuryyev, nadi}@ualberta.ca

Nazim Uddin Bhuiyan, Leonardo Banderali
IBM, Markham, Canada

{nazim.uddin.bhuiyan, leob}@ibm.com

Abstract—Software variability is the ability of a software
system to be customized or configured for a particular context.
In this paper, we discuss our experience investigating soft-
ware variability implementation challenges in practice. Eclipse
OMR, developed by IBM, is a set of highly configurable C++
components for building language runtimes; it supports multiple
programming languages and target architectures. We conduct an
interview study with 6 Eclipse OMR developers and identify 8
challenges incurred by the existing variability implementation,
and 3 constraints that need to be taken into account for any re-
engineering effort. We discuss these challenges and investigate
the literature and existing open-source systems for potential
solutions. We contribute a solution for one of the challenges,
namely adding variability to enumerations and arrays. We also
share our experiences and lessons learned working with a large-
scale highly configurable industry project. For example, we found
that the “latest and greatest” research solutions may not always
be favoured by developers due to small practical considerations
such as build dependencies, or even C++ version constraints.

Index Terms—software variability, variability implementation,
language runtimes, Eclipse OMR

I. INTRODUCTION

Many software systems are designed to be configurable and
adaptable to various user requirements or to the context they
run in. For example, an operating system may run on a desktop
or on a mobile device. Concepts such as software product
lines [18], [27] (SPLs) or software families [21] have been
introduced to deal with such needs. There has been extensive
work studying open-source configurable systems [9], [26],
[32], [46], [48], [51], [53] as well as a few industrial case
studies [12], [23], [28], [52]. New programming paradigms to
support variability implementation have also been introduced,
including aspect-oriented programming [29], feature-oriented
programming [43], and delta-oriented programming [45].
However, with the exception of basic preprocessor-based
or feature-toggle based mechanisms [22], many of these
paradigms find their place mainly in academic papers, with
limited adoption in practice. It is therefore important to
investigate the variability implementation needs of real indus-
trial systems to understand which variability implementation
mechanisms work for them.

In this paper, we present our case study experience in-
vestigating the software variability challenges and needs of
Eclipse OMR [3], an industrial open-source software sys-
tem developed by IBM. Eclipse OMR is a set of open-
source C++ components that can be used to build language

runtimes [3]. Eclipse OMR’s variability comes from its
support for multiple architectures, and equally important, its
support for creating language runtimes for multiple program-
ming languages. Its goal is to allow any language developer
to reuse and customize its components to create, for example,
their own just-in-time (JIT) compiler or garbage collector.

In a previous position paper, we explained Eclipse
OMR’s non-typical variability implementation strategy, namely
static polymorphism through extensible classes [37] (recapped
in Section II-C). When we started working with the team
in 2017, we thought that static polymorphism is the main
problem that leads to their variability implementation being
convoluted and hard to understand. Thus, we investigated the
performance impact of switching to the more typical dynamic
polymorphism, with the motivation that it may solve some
of the faced comprehension issues [38]. While our previous
work focused on the trade-offs between static and dynamic
polymorphism, we realized that there are still open problems
that may require more re-engineering effort. Thus, in this
paper, we take a step back to collect and understand all the
current challenges in order to develop a more holistic picture
for the required variability support.

To collect this information, we interviewed 6 IBM devel-
opers who either directly contribute to Eclipse OMR or use
it as part of their daily work. We identified eight challenges
and three constraints that should be taken into account when
looking for a new variability design. We then surveyed the
literature and existing large open-source software systems to
identify the current variability implementation strategies that
may resolve these challenges and constraints. We found that
many of these strategies do not resolve all challenges or
are infeasible, due to the required time investment of the
Eclipse OMR team. Thus, we took the alternative pragmatic
approach of picking challenges that can be solved with local
re-engineering changes and gradually addressing them one
by one. In this paper, we discuss our implemented solution
to one such challenge, namely supporting the variability and
extension of data in arrays and enumerations, which has been
merged into the Eclipse OMR repository [6].

Large open-source industrial systems with software variabil-
ity are hard to come by, which is why the Linux kernel has
attracted much of the research in this area [26], [34], [40],
[46]. This paper contributes the variability implementation
details, challenges, and constraints of a large industrial system.



Additionally, we resolved one of the challenges with a solution
that addresses the problem of lack of extension mechanisms
for arrays and enumerations in C++. Such a solution may be
adopted by other systems facing the same problem. Finally, our
experience working with Eclipse OMR provides valuable
insights for similar research-industry collaborations in this
area. First, we found that it is necessary to communicate
with as many developers from the team as possible to get
a more comprehensible picture of the challenges that need
to be solved. Our interview study proved invaluable in this
aspect. Second, we found that it is important to dig deeper
into technical and practical constraints the team may have
since the typical state-of-the-art solutions researchers think of
may not necessarily be welcome by developers. Instead, they
may prefer simpler solutions that, for example, do not entail
additional build dependencies or developer training.

II. BACKGROUND

A. Software Variability

Companies often want to produce similar software, yet for
different clients or contexts. For example, the same application
might work differently on a desktop as opposed to on an
embedded system (e.g., reduced functionality for performance
on the latter). Yet, one does not build a system for each
environment from scratch. To reduce code duplication and
increase reuse of the existing codebase, the idea of software
variability (i.e., the ability of a software to be changed, config-
ured or customized for a particular context [31]) emerged. By
maximizing code sharing among the system’s variants, highly
variable (or highly configurable) software helps companies
minimize the time and money spent on software development
[9]. Highly configurable software is usually defined in terms
of the features (i.e., units of functionality) it offers. To support
variability, a variability implementation mechanism is needed
to determine how different features or parts of the code get
selected at compile time or run time. The simplest variability
implementation mechanism is traditional if statements [9]; we
discuss current mechanisms in detail in Section V-A.

B. Eclipse OMR

Eclipse OMR is a set of open-source C++ components
for building language runtimes [3]. A language runtime can
be seen as the layer of indirection between the language and
the operating system which takes care of things such as the
application memory layout [8]. In modern languages such as
Java and C#, the runtime is a complete environment that the
program runs in, on top of the operating system. Eclipse
OMR allows building this type of runtime. For example, it
allows building a JIT compiler and/or a garbage collector that
take cares of the behavior of the program while it is running.

In principle, Eclipse OMR can be used to build a lan-
guage runtime for any programming language. For example,
assume Alice developed a new language called Alpha. As
a language designer, Alice needs to decide on the syntax
and semantics of the language. She also needs to decide on
whether she wants to improve the performance of certain

aspects of her language by relying on a JIT compiler. For
example, in Java, the JIT compiler compiles the bytecode of a
called method into machine code, while performing certain
optimizations that provide performance gains especially if
a function is called multiple times. Eclipse OMR helps
Alice with the latter task. For example, to implement a
JIT compiler, Alice would write her own code to describe
how to translate Alpha’s language constructs into Eclipse
OMR’s Intermediate Language (IL). The CodeGenerator
class in Eclipse OMR is then responsible for translating
the generated IL into machine code. Alice can also extend
the CodeGenerator class to optimize part of this code
generation process. Similarly, if her language needs new IL
constructs not currently supported (e.g., complex numbers),
she can extend the current IL through the Node class.
Eclipse OMR, open-sourced in 2016, has ∼ 1.2 million

lines of code and supports various hardware and operating
system platforms. Eclipse OMR supports x86 (32-bit and
64-bit), ARM (32-bit and 64-bit), Power, and IBM’s z/Ar-
chitecture. At the time of writing this paper, Eclipse OMR
has already been used for Java (through its largest client, the
Eclipse OpenJ9 virtual machine [5]), Ruby, Smalltalk, Python,
Lua, and WebAssembly.

C. Eclipse OMR’s Current Variability Implementation

Overall, Eclipse OMR has three variability dimensions:
(1) features, (2) languages, and (3) architectures. Features
include reusable and extensible compilation algorithms such
as IL optimization, code generation, and instruction selection.

a) Static polymorphism with extensible classes: Given its
domain, Eclipse OMR must be highly performant at runtime
and have little memory footprint. Thus, Eclipse OMR uses
static polymorphism, which means that the concrete classes of
all objects are decided at compile time. This is as opposed to
the more adopted dynamic polymorphism where the concrete
type of an object and thus the concrete method to call on
that object is resolved at runtime. Eclipse OMR developers
use static polymorphism to build extensible classes, a linear
inheritance hierarchy of class extensions that are organized in
a special way (explained shortly) to allow the compiler to find
the most specialized implementation to use. Combined with
additional build-time mechanisms such as the C preprocessor,
as well as language constructs such as C++ namespaces,
extensible classes get rid of dynamic dispatch, which may slow
down run-time speed due to the use of virtual tables.

b) Namespaces: Eclipse OMR uses the same name
for all classes in a given hierarchy and uses namespaces
to distinguish them. For example, OMR::CodeGenerator
class is the most general CodeGenerator class, whose
implementation is reusable for all architectures. On the
other hand, OMR::X86::AMD64::CodeGenerator class
is designated solely for 64-bit X86 architecture. In addition
to avoiding naming collisions, the namespaces encapsulate
variability across architectures in a natural way. Further,
the nesting of namespaces, as shown in the example of
CodeGenerator class in Figure 1a, describes a degree of



(a) Example of extensible class hierarchy (b) Example of directory structure

Fig. 1: Examples of Eclipse OMR’s variability implementation mechanisms [37]

specialization. The level ranges from general to specific; a
namespace containing the implementation for X86 architecture
is more general than the one containing the implementation
for AMD64. Before extending any Eclipse OMR class, the
client must declare a namespace representing their language. In
our example, this is the Alpha namespace shown in Figure 1a.

c) Directory structure: To organize namespaces,
Eclipse OMR follows a specific directory structure (shown
in Figure 1b). The topmost directory, omr/compiler/,
contains the OMR namespace, which contains the functionality
common to all architectures, and usable by any language. The
most nested directory (e.g., omr/compiler/x/amd64/)
contains the specific implementation for 64-bit X86
architecture (x in the path stands for X86).

d) Connectors: The above hierarchy means that Alice
needs to decide which specific CodeGenerator class to
extend from the given hierarchy. This means that every
time she wants to compile for a different architecture, she
needs to change the class in her extends clause. Nat-
urally, such “hard-coding” is impractical and not encour-
aged. To let the client’s code work with any architecture,
Eclipse OMR uses the idea of connector classes. A con-
nector is simply a typedef of a specific class extension.
This typedef is present in every class in the hierarchy,
as shown by the dashed lines in Figure 1a (e.g., typedef

OMR::ARM::CodeGenerator CodeGeneratorConnector). That
way, Alice does not need to choose which architecture class
from the hierarchy to extend and simply always extends the
connector, e.g. CodeGeneratorConnector in the figure.

e) Include paths: At this point, the reader is proba-
bly wondering how the connector class would resolve to
the right architecture class. This is where include path pri-
oritization comes in. In the build system, include paths
for each architecture are set up such that the most spe-
cialized class is always seen first. For example, to com-
pile CodeGenerator class for AMD64 (64-bit version
of X86) architecture, the include paths passed in the
build system would be as follows: -Iomr/compiler/x/amd64

-Iomr/compiler/x -Iomr/compiler. Thus, when compiling
the CodeGenerator class, the build system will first search
for a class declaration in omr/compiler/x/amd64. If
it does not find it there, it will search for the class in
omr/compiler and so on. At the first class declaration
it finds, it will also find the connector typedef statement.
These typedef statements are guarded similar to include
guards such that they can only be defined once. Thus, through
this include path prioritization, the connector class always
resolves to the most architecture-specific class in the hierarchy,
which in turn extends all previous more generic classes.

f) Concrete classes: In addition to creating the right class
hierarchy, there will of course be instances of the desired
class used in other parts of Eclipse OMR. However, there
is no way to know which client languages will end up using
Eclipse OMR, which means we need a generic way of
referring to a concrete class that is always the most specialized
class in the hierarchy. To unify things, Eclipse OMR has the
TR namespace which must extend the language namespace.
The TR namespace is the final namespace in the hierarchy
and the TR class is the concrete class from which objects
can be instantiated. Thus, OMR developers can directly use
that namespace without needing to know in advance what
namespace the client is going to choose.

g) self(): Whenever a TR object is used, developers
expect that it always resolves to the most derived implementa-
tion; the resolution must happen at compile time. However, if,
for example, a method foo() is invoked on a TR object inside
OMR::X86::CodeGenerator, the compiler can only look
for foo() inside OMR::X86::CodeGenerator and its
parent classes. However, if this code is being compiled for
OMR::X86::AMD64, foo() could actually be defined in
OMR::X86::AMD64::CodeGenerator which is further
down in the hierarchy. To force the compiler to always scan
the inheritance hierarchy bottom-up regardless of which class
we are in in the hierarchy (i.e., to always find the most derived
implementation), Eclipse OMR developers use a special
method called self(). self() performs a static cast of



TABLE I: Participant Overview

ID Role Years in Company

P1 Senior Compiler Developer 19 years
P2 JIT Compilation Team 2 years
P3 Compiler Developer 5 years
P4 Z Code Generator 5 years
P5 JIT Builder Team 2.5 years
P6 General OpenJ9 intern 8 months

the this pointer in a given class hierarchy to the class in the
TR namespace of that hierarchy. Using self(), developers
force the compiler to search from the bottom of the hierarchy.

To summarize, Eclipse OMR’s compiler component man-
ages variability with the help of extensible classes that leverage
static polymorphism. To enable extensible classes to behave
in a specific way, Eclipse OMR developers rely on C++
namespaces, compiler include-path prioritization, connector
classes, and the self() function. This unique approach helps
Eclipse OMR stay language-agnostic, allows the clients to
extend and reuse a namespace specialization of their choice,
as well as organizes variability across architectures using a
linear hierarchy to represent a given class.

III. INTERVIEW STUDY DESCRIPTION

Based on our internal discussions with our direct Eclipse
OMR collaborators and our previous work with them [37],
[38], we knew that the current variability implementation
strategy had its shortcomings. However, we only had a limited
view of these shortcomings. Thus, to guide any large-scale
engineering efforts, we wanted to make sure we hear from
more members in the team to have a comprehensive view.
Thus, in this paper, we conduct an interview study to answer
the following questions: Are there any challenges related to
Eclipse OMR’s current variability implementation strategy?
and Are there any constraints that need to be considered
for future changes? Based on the information gathered from
participants, our goal is to come up with a set of challenges
that future re-engineering efforts should try to overcome, and
the set of constraints that these efforts should take into account.

a) Participant Recruitment: Our target population is de-
velopers who directly contribute code to OMR or who work
on products that use OMR, such as OpenJ9. We sent invitation
emails to 11 candidate developers, and 6 agreed to participate
in the study. Five of these interviews were carried in person at
IBM Toronto Software Lab, while one was carried over Skype.
Table I provides an overview of our participants.

b) Interview Setup and Data Analysis: We followed a
semi-structured approach for the interviews, where we had
a pre-defined list of questions to guide the interview, but
allowed participants to deviate from these questions. We also
asked new follow-up questions depending on the direction of
the conversation. That said, for all interviews, we made sure
to ask participants about challenges they face and technical
characteristics of OMR that need to be taken into account
for any new design. Five of the interviews lasted between
47min – 1hr, while one lasted 20min. We recorded all in-
terviews, with participants’ permission and after university

ethics clearance, and transcribed them. We then followed
an open coding approach [16] where we read through the
whole transcript and assigned a label to different parts of
the interview. We did not attempt to categorize things at that
point, but simply annotated it with descriptive phrases or labels
that summarize the subject of discussion. An example phrase
includes “configuring IDE for different platforms may be a
bit tedious”. We then went through all phrases and grouped
them into meaningful categories, as well as whether they are
describing current design challenges or constraints.

Afterwards, we prepared a presentation to share with the
whole Eclipse OMR team through their bi-weekly architec-
ture meeting [4]. This allowed us to verify our interpretations
of the interviews and our synthesized results. There were 15
participants in this meeting, several of who were not part of
our interviews or any previous discussions, which allowed us
to get additional validation and understand which challenges
are most important to the team. The presentation lasted around
30 minutes and was followed with almost 45 minutes of
discussion. A recording of the meeting is available online [7].

IV. ECLIPSE OMR VARIABILITY CHALLENGES AND
CONSTRAINTS

We now describe the challenges and constraints synthesized
from our interview study.

A. Challenges

We collect eight challenges associated with the existing vari-
ability implementation mechanism, which should ideally be
addressed by any new variability implementation mechanism.

CHAL 1. No standalone end product: As P3 mentions,
one of the biggest challenges when starting with Eclipse
OMR is that it is not a standalone product that one can build
and run. P4 also discusses this point by saying that “I think
it’s hard for people to [get started with OMR], because we
don’t build any kind of static libraries per se, ..., there’s no
library that ever gets built [in OMR]. It’s kind of meant to
be extended and then you build whatever you want; you can
statically link it, you can make it a dll and dynamically link
it. It’s kind of a barrier to entry where people can’t envision
[how to] use this thing [and] what [exactly] is it?” Typically,
when starting with a system, a developer either adds that
project as a dependency and uses its Application Programming
Interface (API) in their code (e.g., in the case of a library or
a framework) or builds it and runs it first and then decides
how to extend its functionality. Instead, to leverage Eclipse
OMR, a developer needs to identify which classes to extend
and which functions they need to override. To observe the
effect of their extensions, a developer needs to run a program
written in their target language using the language run-time
extension they created using Eclipse OMR. Creating such
an extension requires a deep understanding of Eclipse
OMR’s architecture and how extensible classes work, which
is usually beyond the knowledge of a beginner.



CHAL 2. Unclear extension points: Given the use of
extensible classes, no functions are marked as virtual
which means that the extension points a new client developer
needs to consider are not well defined. For example, certain
behavior of the code cache must be specified by the developer
as extension points. However, not all these expected exten-
sion points are easily identifiable. For example, the function
CodeCacheManager::allocateCodeCacheSegment
is expected to allocate a block of executable memory and then
wrap it in a TR::CodeCacheMemorySegment instance.
However, it has no implementation in the OMR namespace and
so language developers are required to provide a “sensible”
implementation themselves. It is up to the language developer
to decide what is “sensible” for their project since there is
no starting point implementation in Eclipse OMR and there
is no documented way of implementing this function. Right
now, the developer would typically look at existing Eclipse
OMR clients, such as OpenJ9, and try to mimic what they do.

CHAL 3. The use of self(): Perhaps the most brought
up topic in the interviews was the use of self(). The
need to use self() to call functions in the same class
stems from using extensible classes in Eclipse OMR. All
participants agreed that this is unintuitive for newcomers since
they probably never used something similar in their previous
work. The use of self() also makes the code ugly and harder
to understand. Since forgetting to use self() is common,
the Eclipse OMR team has developed a linter that warns
developers if they forget to use it. Given that there is no
explicit list of which methods need to be extended, the linter
checks that self() is used for all method calls of the
methods in the same class, even if none of the downstream
projects currently use this method. This ensures that the correct
implementation of the function gets invoked if downstream
projects override this function down the line. While this
prevents future problems from occurring, developers find the
linter warnings frustrating when they know that this function
is currently not being overridden anywhere in the hierarchy.

CHAL 4. Connector classes: Connectors are another
side effect of using static polymorphism through extensible
classes. They complicate the design and create another layer of
indirection. P4 mentions that they have seen other developers
commonly forget to use the connector class on static func-
tions. Since static functions can also be overridden between
Eclipse OMR and the project they consume, this may lead
to incorrect behavior especially with the presence of sub
architectures. Thus, the use of connectors adds another layer of
complexity and indirection that needs to be taken into account.

CHAL 5. Comprehension for concrete configurations:
Given that the same class has different architecture versions,
it is often not clear which functions are available for a
given architecture. Assume a developer is interested in x86
and wants to know which functions are available in the
CodeGenerator hierarchy. In that case, as a result of the
current static polymorphism, the developer needs to resolve
all include paths to see a single linear hierarchy for x86.
Alternatively, the developer can have a view of the particular

architecture, or language/architecture combination, in their
IDE. However, several participants pointed out that not all
IDEs have an easy support for this since manual configuration
of the paths related to the target architecture is needed. To
do this, developers typically run a mock build on the target
platform, collect all needed include paths and then put them
into their IDEs (P4). Once correctly configured, code navi-
gation works as expected (e.g., finding usages of a function)
although if a new file gets added to that architecture, the IDE
will not automatically include that file in its build path.

CHAL 6. Tedious and Non-obvious Code Edits: Given
how extensible classes work, adding a new constructor any
where in the hierarchy (e.g., in the X86 class) requires
declaring the same constructor in the TR namespace. Similarly,
adding or changing the constructor of an extensible class in
the OpenJ9 namespace (e.g., adding a parameter) requires
changing the constructor of the same class in the (1) OMR
namespace, (2) TR namespace in the Eclipse OMR reposi-
tory, and (3) TR namespace in the OpenJ9 repository. Note that
the first two changes lie in the Eclipse OMR repository. As
a developer working on the separate repository of OpenJ9,
it is not directly obvious that a change in Eclipse OMR is
also needed for local changes.

CHAL 7. The Java legacy: Historically, Eclipse
OMR grew out of IBM’s previous Java J9 just-in-time
compiler, Testarossa. As a consequence, a lot of the
current design and supported operations revolve around the
Java world. While Eclipse OMR is supposed to be a
language-independent framework for developing language
run-times, there are still functions in OMR that are specific
to Java. The code in these functions are often guarded
with the macro J9_PROJECT_SPECIFIC. A search
for this macro reveals over 650 cases of code that is
only enabled in OpenJ9 builds. One example of such a
Java-only function that is present in an extensible class is
OMR::Power::TreeEvaluator::reverseLoadEvaluator.
The function itself is present in OMR, but its implementation
code is guarded by J9_PROJECT_SPECIFIC. These
guards cause kitchen sink problem, which is the phenomenon
that OMR will end up containing many language-specific
functions in common code that is exposed to all OMR users.

CHAL 8. Missing extension mechanisms: One of the
current limitations of extensible classes, and any native
C++ inheritance-based mechanism, is that they do not sup-
port enum, union, or array extensions. As a workaround,
Eclipse OMR currently relies on various macro and in-
clude tricks. Let us take the example of opcodes, which
are Eclipse OMR’s IL operations that get translated to
machine code. Figure 2 shows an excerpt of the ILOpCodes
enumeration declared in ILOpCodes.hpp. The original dec-
laration in this header file actually only includes another
header file (ILOpCodesEnum.hpp), which in turn includes
OMRILOpCodesEnum.hpp which then contains a long list
of the enumeration values. In other words, Eclipse OMR
developers currently use file inclusion as a mechanism of
creating some hierarchy of the different opcodes, where files



enum ILOpCodes {
//Originally #include "il/ILOpCodesEnum.hpp"
FirstOMROp,
BadILOp = 0, // illegal op hopefully help with ...
aconst, // load address constant ...
iconst, // load integer constant ...
...

};

Fig. 2: ILOpCodes enumeration declaration in ILOpCodes.hpp

are included in a specific order as needed. For illustration in
the figure, we already perform these includes and show some
of the enum values that would get included. Each of the
enumerated values corresponds to an opcode. Each opcode
has some properties, such as its name and data type. These
properties are declared in a separate file as an array of structs,
shown in Figure 3. Similar to the previous file, there is a chain
of includes that leads to including the properties shown in the
listing. The order of opcodes in the enumeration in Figure 2
must match the order of properties in Figure 3. Figure 3
shows the first array entry (index 0) which corresponds to
the properties of the first enumeration value of 0, BadILOp.

This design causes several issues that were discussed by
three participants. First, having to match declaration orders in
two separate data structures that are spread across multiple
files is tedious and error prone. Another issue is that any
changes in these opcodes or their order have a downstream
effect on other language developers. For example, in OpenJ9,
the opcodes are declared in a similar way: first, the file
containing the OMR opcodes is included and then additional
entries (whether opcode enum constants or a property entry
in the array) are included afterwards. Breaking any of the
order assumptions can result in reading wrong/bad data. Since
the order violation does not result in build breakage, resulting
problems are often harder to catch. Eclipse OMR developers
try to mitigate this by being very diligent in reviewing any
changes to these declarations. Reviewing just a few lines of
code can take several hours because of the manual cross-
referencing required. Finally, the fact that a single declaration
(whether an enumeration or a table) spans multiple files
contributes to code spread, where developers may easily forget
to edit one of the files that affect the final composition of this
declaration. Interestingly, there is a large warning note at the
top of OMRILOpCodesEnum.hpp that lists 13 other files to
examine in order to add an opcode or change opcode order.

Summary: To summarize, Eclipse OMR developers
experience the following common challenges: (1) the current
variability implementation mechanism adds multiple layers of
complexity that hinder code comprehension, (2) extensible
classes cause code spread within the codebase itself. The com-
bination of code spread across multiple repositories with the
tight integration between downstream projects and Eclipse
OMR result in the need for non-obvious code edits; (3) while
the current OMR code base is meant to be generic enough to
support many languages, it still contains Java-specific code as
a result of the original code base; and finally, (4) since there is
currently no built-in C++ enum or array extension mechanism,
Eclipse OMR developers use workarounds through includ-

OMR::OpCodeProperties OMR::ILOpCode::_opCodeProperties[] =
{
//#include "il/ILOpCodeProperties.hpp"

{
/* .opcode = */ TR::BadILOp,
/* .name = */ "BadILOp",
/* .dataType = */ TR::NoType,
...
},

};

Fig. 3: Properties corresponding to the opcodes from Fig. 2,
declared in OMRILOps.cpp

ing multiple files in an enum or table declaration, and have
to manually keep track of the order of the enum constants in
different files that must match each other. We deduce that any
new design should prioritize simplicity and usability of the
codebase. It should also ideally ensure a cleaner separation
of concerns or, pragmatically, more streamlined consistency
checks and editing capabilities across all related code and
repositories, including support for extending enums and tables.

B. Constraints

Participants also mentioned several constraints that must be
taken into for any design Eclipse OMR follows.

a) CONST 1. Strongly connected components: One of
the variability implementation mechanisms that Eclipse
OMR developers previously explored was a template-based
solution, specifically the Curiously Recurring Template Pattern
(CRTP) [11]. Templates can potentially solve problems such
as the use of self(). However, a C++ template requires all
definitions to be in header files which means that whenever
the template header file is included, the compiler needs to
compile all the implementation code rather than simply treat
these methods as external declarations. This results in larger
binaries and longer build times. Due to these reasons, the
Eclipse OMR team moved away from using any templates
in the project, and would also like to avoid using them (or
any other design that results in the same strongly connected
component issue) again in any future design.

b) CONST 2. Impact on downstream projects:
Eclipse OMR has many client projects, the largest of which
is OpenJ9. Any changes in the Eclipse OMR codebase must
eventually be integrated into the client projects as well, and
must avoid breaking any client code (e.g., See IV-A, Challenge
8 where the order of opcodes in OpenJ9 must correspond to the
order of opcodes in Eclipse OMR). Since Eclipse OMR
strives to support many languages, introducing any changes
to the existing variability mechanism or developing a new
one should have minimal impact on downstream projects (i.e.,
specific language runtimes), such as OpenJ9.

c) CONST 3. C++ Version: Eclipse OMR supports
various environments, and the level of C++ compiler support
on these platforms differs. For example, on the AIX operating
system, the XL C/C++ compiler performs more optimizations
to the native code it produces resulting in faster run-time
performance than the code produced by its GCC counterpart
on the same operating system. Since run-time performance is
essential in Eclipse OMR, the team uses the XL C/C++

https://github.com/eclipse/omr/blob/30013dad5cddc136cca4ad34747fac0d9f03a874/compiler/il/ILOpCodes.hpp
https://github.com/eclipse/omr/blob/ac5f4ec2cb7cebf898408bc23734427583b81543/compiler/il/OMRILOps.cpp#L46


compiler for AIX. However, while the C++ language has
already evolved into C++20, the version of XL C/C++ used
for AIX builds does not even support all features of C++11.
This means that the Eclipse OMR team is stuck coding to
the lowest common denominator to avoid large discrepancies
between the various platforms it supports. Thus, while there
may be new useful language features, such as constexpr or
initializer lists for non-aggregate types (e.g., initializer list for
std::vector), such features cannot be used since they are
not supported by the compilers of all the target environments.

V. EXISTING VARIABILITY IMPLEMENTATION STRATEGIES

We now explore the literature and existing case studies
to identify variability implementation mechanisms that may
overcome the above challenges.

A. Strategies in the Literature

The “Feature-Oriented Software Product Lines” book by
Apel et al. [9] provides a comprehensive survey of existing
variability implementation strategies. Thus, we use it as a
reference to explore known variability implementation strate-
gies in the literature. In general, variability implementation
strategies differ in their nature: they can be tool-based or
language-based, as well as fine-grained (e.g., if statements)
or coarse-grained (e.g., components).

The C preprocessor, specifically using #ifdef, is a well-
known tool-based, fine-grained mechanism for conditional
compilation which has been extensively used and studied,
despite being criticized for reducing readability and compre-
hension [32], [39], [46], [50]. Similarly, build systems, e.g.,
Make, may be used to conditionally compile specific files.
At a low level, OMR already uses #ifdefs for include-like
guards for defining connectors on each architecture (see Sec-
tion II-C) and CMake to manage which features (e.g., garbage
collector) get compiled. However, using #ifdefs and the
build system alone are not enough to cater to Eclipse
OMR’s variability, such as offering external extension points,
which is why extensible classes are used.

Software variability can also be achieved through simple
design patterns (e.g., strategy pattern [24]) or through a
structured framework design (similar to the Android platform
or Eclipse plugins [2], [25]). A framework usually provides ex-
plicit extension points. In a sense, Eclipse OMR is already a
white-box framework, which means that client developers need
to be familiar with the internals of the classes and methods.
However, due to legacy baggage and the complex nature of its
extensible classes, the current extension points are not obvious.

Feature-oriented programming (FOP) is a language-based
coarse-grained variability implementation mechanism [9]. It
encapsulates each feature in a single feature module and uses
the notion of refinements that allow to extend classes without
changing existing implementations. FOP naturally allows for
direct feature traceability due to feature modularity, and thus,
could clarify OMR’s extension points. However, it has been
used mostly in academia and little in the industry, possibly
due to language support and tooling requirements. Despite

FOP’s potential benefits (e.g., less code spread and easier
code navigation), it would be infeasible to re-engineer OMR
to apply FOP since that requires (1) developer time investment
because OMR expert knowledge is needed, (2) new tools for
developers to learn, and (3) new tools that must be installed
on the build servers and developers’ local environments.

Summary: On one hand, some variability mechanisms
address specific low-level needs and cannot be used off the
shelf to improve Eclipse OMR’s overall variability imple-
mentation. On the other hand, performing a migration, espe-
cially to coarse-grained mechanisms such as feature-oriented
programming, requires extensive preplanning and investment
that the Eclipse OMR team cannot invest at the moment.

B. Related Case Studies

Many companies have reengineered their software and hard-
ware into product lines. For example, the Software Product
Line Conference Hall of Fame contains more than 20 orga-
nizations that adopted SPLs for their projects [47]. There are
also numerous industry case studies in various domains such
as temperature monitoring [30], biometric systems [44] UML
diagramming [20], and geographic information systems [10],
[14], [15], [33], [36], [42], [54].

Most industry case studies adopted product-line engineering
in an extractive manner, i.e., creating an SPL out of existing
software variants (end products), while our case study is
about re-engineering an existing variability implementation.
For instance, while Chae et al. [17]’s domain is close to ours
(MLPolyR compilers), they re-engineered different existing
compilers into an SPL. Another extractive case is Polyglot
compiler, which performs source-to-source compilation to
Java or Java bytecode [41]. Finally, some studies survey
current state of variability management tools without going
into concrete implementation mechanisms for each case [13],
some lack specific technical details (probably due to confi-
dentiality reasons) [49], [54], while others are working with
simpler and smaller projects. In fact, ArgoUML’s original
implementation consists of about 120 KLOC, whereas OMR
has ∼1.2 MLOC [20]. Microsoft Common Language Runtime
(CLR), part of the .NET framework, is in the same domain
of language runtimes as OMR [1]. However, while CLR is
already a language runtime, OMR is rather a collection of
components for building runtimes. Moreover, to the best of
our knowledge, there are no CLR case studies that could be
compared to Eclipse OMR in terms of variability design.

Summary: While many existing industry and academic
case studies extract an SPL from existing set of assets, we
are trying to re-engineer an already existing configurable
system. Unlike most other studies, Eclipse OMR is a large-
scale project with multiple variability dimensions (language,
architecture, and extensible features such as code generation).
In addition, while many industrial SPLs do not share their
project’s source code and do not provide precise technical
information, Eclipse OMR is open source which allows us
to share more technical details and insights, which may be
useful for others in a similar situation.



VI. ADDRESSING THE ENUM PROBLEM

After looking at existing techniques in the previous section,
we decided to take an incremental approach where we address
one challenge at a time, while respecting the identified con-
straints. Such step-by-step approach has a minimal impact on
the main ongoing development of the project and also helps the
researchers on the project stay up to date with IBM developers
through continuous code reviews and pull requests. Based on
discussions with the team, we agreed to start with Challenge 8.

A. Discussed Alternatives

Based on searching for systems with similar needs and
on discussions with the Eclipse OMR team, we considered
three potential alternative solutions for challenge 8.

A DSL Approach, LLVM TableGen: LLVM is a collection
of reusable and modular compiler tools for building front-
end and back-end compilers [35]. Its back-end classes reason
about architecture-specific information in a generic way; for
example, to perform a register allocation, a back-end class
has to know what registers are available on the target ar-
chitecture. This architecture-specific information is obtained
through “target description” (.td) files, which are used to
generate header files with the necessary information about
an architecture. These .td files correspond to a domain-
specific language (DSL) known as TableGen. We considered
implementing a similar DSL for Eclipse OMR to encode
opcode information from the scattered enums and arrays.
For example, a single DSL class may represent an opcode,
and the class could be extensible so that more fields, each
representing an opcode property, could be added (or overriden)
by the client. The DSL approach would allow for automated
derivation of header files from a single definition containing
built-in (OMR) and client (language-specific) opcodes.

A Simpler DSL-like Approach: A simpler DSL-like alterna-
tive to TableGen is to store opcode information in a file format,
such as JSON. The JSON file(s) would contain the relevant
opcode information that is used to generate C++ headers. For
example, Eclipse OMR would have one central JSON file
that stores all OMR opcodes and their properties, and each
language client would have another JSON file that stores
additional language-specific opcodes. During compilation, a
Python script can process all the JSON files to generate a
corresponding set of C++ headers for the different classes.

SpiderMonkey and macro expansion: SpiderMonkey is
a JavaScript engine maintained by Mozilla, comprised of
components such as interpreter, JIT compiler, and garbage
collector [19]. SpiderMonkey has its own set of bytecodes
(opcodes). Unlike OMR that manages opcode information in
a “distributed” manner, SpiderMonkey specifies all opcodes
in a single opcodes.h header file. The header file contains
all opcode information such as value, token, length, and
description. The opcode information is contained in C++
macros. The opcodes.h file can be consumed anywhere
where certain opcode information is required (e.g., declaring
an array with all opcodes’ lengths) by simply including the

#define FOR_EACH_OPCODE(MACRO) \
MACRO(\
/* .enumValue = */ iconst, \
/* .name = */ "iconst", \
/* .dataType = */ TR::Int32, \
...

) \
MACRO(\
/* .enumValue = */ fconst, \
/* .name = */ "fconst", \
/* .dataType = */ TR::Float, \
...

) \
...

Fig. 4: Excerpt from our implemented OMROpcodes.hpp

header file and defining a custom macro function that will
fetch a desired opcode property.

Discussion of Alternatives: All the above solutions will
have minimal effect on downstream projects such as OpenJ9
and will allow incremental migration where we can start
with Eclipse OMR and add later support for downstream
projects. Due to its expressiveness and being a well-engineered
solution, our initial intuition was that a DSL solution would
be the one most welcomed by Eclipse OMR developers;
or at least the simpler JSON/Python alternative. However, the
team indicated that they prefer not to install any additional
dependencies, whether these dependencies are new language
parsers or even Python. They also did not want to have to
learn a new language. Based on the practical considerations
above, the Eclipse OMR team preferred the SpiderMonkey
macro-based solution due its canonical form (macros are
native to C/C++ compilers) and minimalism (no additional
dependencies are required).

B. Our Implemented Solution

We now discuss the implementation details of the adopted
SpiderMonkey-inspired macro-based solution. The core idea
behind the implemented solution is the centralization of
all opcode information in a single header file (OMROp-
codes.hpp). The header file contains exactly one macro,
namely FOR_EACH_OPCODE shown in Figure 4. This macro
takes one argument MACRO, which corresponds to multiple
entries with the same name inside the FOR_EACH_OPCODE
macro definition. Each of these entries, marked by MACRO,
represent one opcode with arguments representing its various
properties. In other words, each argument in a MACRO cor-
responds to an opcode property, such as its name or return
type. At a high level, FOR_EACH_OPCODE invokes a passed
in MACRO function for every opcode in the list, returning a
required piece of information about all opcodes.

Let us take the example in Figure 2 and see how this file
would change to generate the enum definition directly from
the central information in OMROpcodes.hpp. Figure 5 shows
how the file now looks like after our implementation. The
file includes OMROpcodes.hpp and defines a macro, called
GET_ENUM_VALUE in this case, which indicates which values
from an opcode definition are relevant to the current file. As
we only care about the enumValue of an opcode, which is
the first argument of a MACRO definition in OMROpcodes.hpp,

https://github.com/eclipse/omr/blob/30013dad5cddc136cca4ad34747fac0d9f03a874/compiler/il/OMROpcodes.hpp


we can ignore the rest of arguments using variadic argument
(ellipses as the second argument). GET_ENUM_VALUE then
indicates that given a list of arguments (properties of an op-
code), the return value should be the enumValue. Since there
are numerous opcodes (and thus enumValues), we should
also place a comma after each enumValue. Essentially,
the macro simply returns the enumValue of the associated
opcode. After GET_ENUM_VALUE is defined, we call the
already defined FOR_EACH_OPCODE macro function which
after preprocessing will expand to a list of enumValues of
all opcodes. After preprocessing the code, the resulting file
will look exactly like that in Figure 2. The difference now is
that the developer will never need to directly edit this file in
order to add new opcodes. In the same manner, one could fetch
other properties as desired and generate the file in Figure 3.

We introduced our solution as a pull request in the
Eclipse OMR repository [6]. All our changes were reviewed
and extensively discussed with 2 members of the Eclipse
OMR team and were eventually accepted and merged. Our
solution covers the entire codebase of the compiler component.
In total, we introduced one central header file (OMROp-
codes.hpp) with 735 opcodes, each containing 14 properties.
We replaced the content of 12 header files with a single macro
in each (similar to the example in Figure 5). Now, the devel-
opers do not have to keep track of the numerous header files
because the consistency is automatically enforced by a single
macro containing all opcode information in OMROpcodes.hpp.

VII. LESSONS LEARNED

While some of the challenges and constraints we discussed
may be specific to Eclipse OMR, other systems may face
similar problems and can benefit from the related discussions.
Additionally, our reported experience working with Eclipse
OMR has transferable lessons as follows.

a) Understand the bigger picture: When we started this
collaboration in 2017, we focused on the idea of extensible
classes for a long time. Thinking that concepts such as
self() are the root of all evil when it comes to difficulties
working with the code, we focused on exploring the transition
to dynamic polymorphism [38]. It took us a while to step
back and realize that this is not the only problem and that
dynamic polymorphism does not solve all problems (e.g.,
code spread, enumeration support, or lack of extension points).
While we had regular discussions with our direct collaborators,
we realized that a bigger conversation with the whole team is
needed. This is why we conducted the interview study, which
proved invaluable to understanding what is really needed.
Additionally, participating in the Eclipse OMR architecture
meeting allowed the research team to reach more Eclipse
OMR developers and have a broader discussion of our findings.

b) Do not underestimate practical constraints: As re-
searchers, we thought that the “latest and greatest” would be
the most welcome option for the various requirements. How-
ever, the interviews and discussions with the team revealed
that things like the C++ version (Section IV-B) or not wanting

#include "il/OMROpcodes.hpp"

enum ILOpCodes {
#define GET_ENUM_VALUE(enumValue, ...) enumValue,
FOR_EACH_OPCODE(GET_ENUM_VALUE)

#undef GET_ENUM_VALUE
};

Fig. 5: The re-designed OMRILOpCodesEnum.hpp file, which
will eventually produce enum values from Figure 2.
to install new dependencies on build servers (Section VI) are
practical constraints that may rule out such options.

c) Identify feasible changes: We realized that any com-
plete rehaul of the system to use coarse-grained strategies
(e.g., feature-oriented programming) are almost impossible
to do without the direct involvement of team members who
have deep knowledge of the semantics and purpose of each
piece of the code base. Obviously, such time investment is
impractical in parallel to new features being developed. We
found that from the research team side, incremental changes
with continuous code review feedback was more feasible.

VIII. CONCLUSION

This paper described the interview study we conducted
with Eclipse OMR developers to gather 8 challenges related
to the current variability implementation mechanism. When
considering these challenges, along with technical constraints
and practical considerations, such as build dependencies or
developer’s time, we realized that none of the known vari-
ability implementation mechanisms can be used off the shelf.
Instead, a combination of different mechanisms and local
solutions seemed like the right way to go. To this end, we
picked one of the challenges (extensibility and consistency of
data structures such as enums and arrays) and implemented
a simple solution for it. Our experience demonstrates that
there are often practical considerations to take into account
that prevent more elegant/elaborate solutions and favor simpler
ones. Unlike other similar industry case studies that do not
provide enough technical information, we hope that technical
details provided in our case study will be helpful for other
similar industry or research case studies.

ACKNOWLEDGMENTS

This work is funded by the IBM Center for Advanced Stud-
ies (CAS). Thanks to all the interviewed developers. Thanks
to X. Liang, R. Young, and D. Maier for their feedback.

REFERENCES

[1] Common Language Runtime (CLR) overview. https://docs.microsoft.
com/en-us/dotnet/standard/clr.

[2] Eclipse Marketplace. https://marketplace.eclipse.org/.
[3] Eclipse OMR. https://github.com/eclipse/omr.
[4] Eclipse OMR Architecture Meeting. https://github.com/eclipse/omr/

issues/3607.
[5] Eclipse OpenJ9. https://github.com/eclipse/openj9.
[6] Our merged Eclipse OMR pull request for challenge 8. https://github.

com/eclipse/omr/pull/4915.
[7] Recording of eclipse omr compiler architecture meeting. https://www.

youtube.com/watch?v=F7FIE1QIUAE&t=1403s.
[8] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers, principles, techniques.

Addison wesley, 7(8):9, 1986.

https://github.com/eclipse/omr/blob/30013dad5cddc136cca4ad34747fac0d9f03a874/compiler/il/OMRILOpCodesEnum.hpp
https://docs.microsoft.com/en-us/dotnet/standard/clr
https://docs.microsoft.com/en-us/dotnet/standard/clr
https://marketplace.eclipse.org/
https://github.com/eclipse/omr
https://github.com/eclipse/omr/issues/3607
https://github.com/eclipse/omr/issues/3607
https://github.com/eclipse/openj9
https://github.com/eclipse/omr/pull/4915
https://github.com/eclipse/omr/pull/4915
https://www.youtube.com/watch?v=F7FIE1QIUAE&t=1403s
https://www.youtube.com/watch?v=F7FIE1QIUAE&t=1403s


[9] S. Apel, D. Batory, C. Kästner, and G. Saake. Feature-oriented Software
Product Lines: Concepts and Implementation. Springer Science &
Business Media, 2013.

[10] J. Bayer, J.-F. Girard, M. Würthner, J.-M. DeBaud, and M. Apel.
Transitioning legacy assets to a product line architecture. In O. Nierstrasz
and M. Lemoine, editors, Software Engineering — ESEC/FSE ’99, pages
446–463. Springer Berlin Heidelberg, 1999.

[11] E. Bendersky. The Curiously Recurring Template Pattern
in C++, 2011. http://eli.thegreenplace.net/2011/05/17/
the-curiously-recurring-template-pattern-in-c/.

[12] T. Berger, R.-H. Pfeiffer, R. Tartler, S. Dienst, K. Czarnecki, A. Wą-
sowski, and S. She. Variability mechanisms in software ecosystems.
Information and Software Technology, 56(11):1520–1535, 2014.

[13] T. Berger, J.-P. Steghöfer, T. Ziadi, J. Robin, and J. Martinez. The state
of adoption and the challenges of systematic variability management in
industry. Empirical Software Engineering, 01 2019.

[14] D. Brugali and N. Hochgeschwender. Software product line engineering
for robotic perception systems. International Journal of Semantic
Computing, 12(01):89–107, 2018.

[15] A. Buccella, A. Cechich, M. Pol’la, and M. Arias. Software product
line reengineering: A case study on the geographic domain. Journal of
Computer Science and Technology, 16:14–28, 2016.

[16] P. Burnard. A method of analysing interview transcripts in qualitative
research. Nurse education today, 11(6):461–466, 1991.

[17] W. Chae and M. Blume. Building a family of compilers. In 2008 12th
International Software Product Line Conference, pages 307–316, 2008.

[18] P. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley Professional, 2001.

[19] M. contributors. Spidermonkey internals, nov 2019.
[20] M. V. Couto, M. T. Valente, and E. Figueiredo. Extracting software

product lines: A case study using conditional compilation. In 2011
15th European Conference on Software Maintenance and Reengineering,
pages 191–200, 2011.

[21] K. Czarnecki. Overview of generative software development. In J.-P.
Banâtre, P. Fradet, J.-L. Giavitto, and O. Michel, editors, Unconventional
Programming Paradigms, pages 326–341. Springer Berlin Heidelberg,
2005.

[22] M. Fowler. Featuretoggle. https://martinfowler.com/bliki/FeatureToggle.
html.

[23] N. Fußberger, B. Zhang, and M. Becker. A deep dive into android’s
variability realizations. In Proc. of the 21st International Systems and
Software Product Line Conference - Volume A, SPLC ’17, pages 69–78.
ACM, 2017.

[24] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley Longman
Publishing Co., Inc., USA, 1995.

[25] Google, Inc. Android. https://www.android.com/.
[26] C. Hunsen, B. Zhang, J. Siegmund, C. Kästner, O. Leßenich, M. Becker,

and S. Apel. Preprocessor-based variability in open-source and industrial
software systems: An empirical study. Empirical Software Engineering,
21(2):449–482, Apr 2016.

[27] S. E. Institute. Software Product Lines Overview, 2017.
[28] M. Jaring and J. Bosch. Representing variability in software product

lines: A case study. In G. J. Chastek, editor, Software Product Lines,
pages 15–36. Springer Berlin Heidelberg, 2002.

[29] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. In M. Akşit
and S. Matsuoka, editors, ECOOP’97 — Object-Oriented Programming,
pages 220–242. Springer Berlin Heidelberg, 1997.

[30] E. Kuiter, J. Krüger, S. Krieter, T. Leich, and G. Saake. Getting rid
of clone-and-own: Moving to a software product line for temperature
monitoring. In Proc. of the 22nd International Systems and Software
Product Line Conference - Volume 1, SPLC ’18, pages 179–189.
Association for Computing Machinery, 2018.

[31] W. Lab. Software variability.
[32] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and M. Schulze. An analysis

of the variability in forty preprocessor-based software product lines. In
Proc. of the 32Nd ACM/IEEE International Conference on Software
Engineering - Volume 1, ICSE ’10, pages 105–114. ACM, 2010.

[33] J. Liebig, S. Apel, C. Lengauer, and T. Leich. Robbydbms: A case study
on hardware/software product line engineering. In Proc. of the First
International Workshop on Feature-Oriented Software Development,
FOSD ’09, pages 63–68. Association for Computing Machinery, 2009.

[34] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre, and C. Lengauer.
Scalable analysis of variable software. In Proc. of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2013,
pages 81–91. ACM, 2013.

[35] LLVM. The LLVM Compiler Infrastructure. http://llvm.org/.
[36] J. Martinez, X. Tërnava, and T. Ziadi. Software product line extraction

from variability-rich systems: The robocode case study. In Proc. of
the 22nd International Systems and Software Product Line Conference
- Volume 1, SPLC ’18, pages 132–142. Association for Computing
Machinery, 2018.

[37] S. A. Masri, N. U. Bhuiyan, S. Nadi, and M. Gaudet. Software variability
through c++ static polymorphism: A case study of challenges and open
problems in eclipse omr. In Proc. of the 27th Annual International
Conference on Computer Science and Software Engineering, CASCON
’17, pages 285–291. IBM Corp., 2017.

[38] S. A. Masri, S. Nadi, M. Gaudet, X. Liang, and R. W. Young. Using
static analysis to support variability implementation decisions in c++.
In Proc. of the 22Nd International Systems and Software Product Line
Conference - Volume 1, SPLC ’18, pages 236–245. ACM, 2018.

[39] F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi, and R. Gheyi. The
love/hate relationship with the c preprocessor: An interview study. In
Proc. of the 29th European Conference on Object-Oriented Program-
ming (ECOOP ’15), pages 999–1022, 2015.

[40] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki. Mining configuration
constraints: Static analyses and empirical results. In Proc. of the 36th
International Conference on Software Engineering (ICSE ’14), pages
140 –151, 2014.

[41] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An extensible
compiler framework for java. In G. Hedin, editor, Compiler Construc-
tion, pages 138–152. Springer Berlin Heidelberg, 2003.

[42] U. Pettersson and S. Jarzabek. Industrial experience with building a web
portal product line using a lightweight, reactive approach. SIGSOFT
Softw. Eng. Notes, 30(5):326–335, Sept. 2005.

[43] C. Prehofer. Feature-oriented programming: A fresh look at objects.
In M. Akşit and S. Matsuoka, editors, ECOOP’97 — Object-Oriented
Programming, pages 419–443. Springer Berlin Heidelberg, 1997.

[44] L. Rincón, E. Muñoz, J. Martinez, M. Pabón, and G. Álvarez. Extractive
spl adoption applied into a small software company. In 2016 XLII Latin
American Computing Conference (CLEI), pages 1–8, 2016.

[45] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tanzarella. Delta-
oriented programming of software product lines. In J. Bosch and J. Lee,
editors, Software Product Lines: Going Beyond, pages 77–91. Springer
Berlin Heidelberg, 2010.

[46] J. Sincero, R. Tartler, D. Lohmann, and W. Schröder-Preikschat. Efficient
extraction and analysis of preprocessor-based variability. In Proc. of
the Ninth International Conference on Generative Programming and
Component Engineering, GPCE ’10, pages 33–42. ACM, 2010.

[47] S. P. L. C. (SPLC). Hall of Fame - SPLC. https://splc.net/.
[48] M. Svahnberg, J. Van Gurp, and J. Bosch. A taxonomy of variability

realization techniques. Software: Practice and experience, 35(8):705–
754, 2005.

[49] A. Tang, W. Couwenberg, E. Scheppink, N. A. de Burgh, S. Deelstra, and
H. van Vliet. Spl migration tensions: An industry experience. In Proc. of
the 2010 Workshop on Knowledge-Oriented Product Line Engineering,
KOPLE ’10. Association for Computing Machinery, 2010.

[50] R. Tartler, D. Lohmann, J. Sincero, and W. Schröder-Preikschat. Feature
consistency in compile-time-configurable system software: facing the
linux 10,000 feature problem. In Proc. of the sixth conference on
Computer systems, pages 47–60, 2011.

[51] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake. A classification
and survey of analysis strategies for software product lines. ACM
Comput. Surv., 47(1):6:1–6:45, June 2014.

[52] F. J. Van der Linden, K. Schmid, and E. Rommes. Software product
lines in action: the best industrial practice in product line engineering.
Springer Science & Business Media, 2007.

[53] B. Zhang, S. Duszynski, and M. Becker. Variability mechanisms and
lessons learned in practice. In Proc. of the 1st International Workshop
on Variability and Complexity in Software Design, pages 14–20. ACM,
2016.

[54] G. Zhang, L. Shen, X. Peng, Z. Xing, and W. Zhao. Incremental
and iterative reengineering towards software product line: An industrial
case study. In 2011 27th IEEE International Conference on Software
Maintenance (ICSM), pages 418–427, 2011.

http://eli.thegreenplace.net/2011/05/17/the-curiously-recurring-template-pattern-in-c/
http://eli.thegreenplace.net/2011/05/17/the-curiously-recurring-template-pattern-in-c/
https://martinfowler.com/bliki/FeatureToggle.html
https://martinfowler.com/bliki/FeatureToggle.html
https://www.android.com/
http://llvm.org/
https://splc.net/

	Introduction
	Background
	Software Variability
	Eclipse OMR
	Eclipse OMR's Current Variability Implementation

	Interview Study Description
	Eclipse OMR Variability Challenges and Constraints
	Challenges
	Constraints

	Existing Variability Implementation Strategies
	Strategies in the Literature
	Related Case Studies

	Addressing The Enum Problem
	Discussed Alternatives
	Our Implemented Solution

	Lessons Learned
	Conclusion
	References

