Using Static Analysis to Support Variability Implementation
Decisions in C++

Samer AL Masri, Sarah Nadi
University of Alberta
AB, Canada
{almasrinadi}@ualberta.ca

ABSTRACT

Eclipse OMR is an open-source C++ framework for building robust
language runtimes. The OMR toolkit includes a dynamic Just-In-
Time (JIT) compiler, a garbage collector, a platform abstraction
library, and a set of developer tooling capabilities. To support the
diverse languages and architectures targeted by the framework,
OMR’s variability implementation uses a combination of build-
system variability and static polymorphism. That is, all implemen-
tation classes that depend on the selected language and architecture
are decided at compile time. However, OMR developers now realize
that the current variability design decision, specifically the static
polymorphism implementation, has its drawbacks. They are consid-
ering using dynamic polymorphism instead of static polymorphism.
Before making such a fundamental design change, however, it is cru-
cial to collect function information and overload/override statistics
about the current variability in the code base.

In this paper, we present OMRSTATISTICs, a static analysis tool
that we built for OMR developers to help them collect this informa-
tion. Specifically, OMRSTATISTICS (1) visualizes the class hierarchy
from OMR’s current static polymorphic implementation, (2) visu-
alizes the function overloads and overrides with their respective
locations in the source code, (3) collects important information
about the classes and functions, and (4) stores all the collected infor-
mation in a database for further analysis. Our tool OMRSTATISTICS
allows OMR developers to make better design decisions on which
variability extension points should be switched from static poly-
morphism to dynamic polymorphism.

KEYWORDS

clang plugin, static analysis, software variability analysis, C++,
static polymorphism, dynamic polymorphism, build path variability

ACM Reference Format:

Samer AL Masri, Sarah Nadi, Matthew Gaudet, and Xiaoli Liang, Robert W.
Young. 2018. Using Static Analysis to Support Variability Implementation
Decisions in C++. In 22nd International Systems and Software Product Line
Conference - Volume A (SPLC ’18), September 10-14, 2018, Gothenburg, Sweden.
ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3233027.3233043

*This work was done while the author was employed by IBM Canada.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SPLC ’18, September 10-14, 2018, Gothenburg, Sweden

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6464-5/18/09...$15.00
https://doi.org/10.1145/3233027.3233043

Matthew Gaudet*
Mozilla
Ottawa, ON, Canada
mgaudet@mozilla.com

Xiaoli Liang, Robert W. Young
IBM Canada
Markham, ON, Canada
{xsliang,rwyoung}@ca.ibm.com

1 INTRODUCTION

Background. Software Product Lines (SPLs) promote systematic
software reuse by providing a way of configuring different, and yet
similar, products from the same set of artifacts [19]. SPLs offer a
set of features, where each feature corresponds to some behavior
or functionality implemented in the system [7]. A variant of the
SPL is configured by selecting the desired feature combination. For
example, the Linux kernel is considered a SPL [41] that can be
configured to work on different hardware platforms and supports
different features: a Linux kernel configured to include USB support
on ARM architecture is different than one that is configured with
HDMI support on X86 architecture.

To achieve the software variability that appears in SPLs, various
variability implementation mechanisms have been discussed in the
literature [7], such as using conditional statements, parameters,
design patterns, frameworks, or components. One of the simplest
and most commonly used variability implementation mechanism
is the C preprocessor’s #ifdef directives to support conditional
compilation. This has led to a vast amount of research and tools for
supporting variability in preprocessor-based code (e.g, [27, 28, 37,
38, 42-44, 49]). However, in practice, developers may be using other
variability implementation mechanisms that may not perfectly align
with the mechanisms commonly discussed in the literature, and
which may not have good tool support.

Eclipse OMR. In this paper, we discuss Eclipse OMR [2], which
was open sourced by IBM in 2016, as an industrial case study of
a configurable system that uses an uncommon combination of
variability implementation mechanisms. OMR is an open-source
framework for building language runtimes. It provides the build-
ing blocks for just-in-time compilers, garbage collectors and more,
each of which can be customized to a targeted language [20]. The
cross-platform components also support multiple operating sys-
tems and target architectures: X86 (AMD64 and i386), Power, Z, and
ARM. OMR has already been used in language runtimes for Java (in
production), as well as with Ruby, Python, and Lua experimentally.
As a result, all consumers of the framework can be described as
products/variants of the OMR software product line. Product vari-
ability can be the result of changing the target language for which
OMR components are used, changing the target architecture of the
resulting language runtime, or both.

The OMR framework’s extension model is based on build system
variability and static polymorphism. The OMR compiler component,
which is our main focus in this paper, is built in an object-oriented
manner where variability is injected through the class hierarchy. A
high-level component may have specializations both for the target
architecture and language, and the specializations are contained in
named directories. OMR creates a class hierarchy for each high-level

SPLC 18, September 10-14, 2018, Gothenburg, SwedenSamer AL Masri, Sarah Nadi, Matthew Gaudet, and Xiaoli Liang, Robert W. Young

component, and uses static polymorphism where all type resolution
for the objects that vary according to language or architecture
happens at compile time. The resolution is guided by the selection
of directories in the build system to compose a given variant of the
product line.

The Problem. Variability implementation decisions may often
need to be revisited during the lifetime of a given software product
line [17]. The choice of using static polymorphism, instead of the
more typical dynamic polymorphism, was driven by performance
concerns, and was decided at the beginning of the project. Given
that OMR variants are language run-time environments, they need
to be optimized as much as possible. The assumption was that
language extensions will need to override many functions from
the core functionality and hence dynamic polymorphism will have
a negative impact on the run-time performance of the products.
In addition, most classes in downstream projects will only have
one real implementation of these methods, so adding the virtual
keyword and the cost of dynamic dispatch is not necessary. After
developing OMR, developers now realize that one major downside
to using the current variability implementation mechanism is the
difficulty of onboarding potential consumers of the framework, as
it is challenging to reason about and extend OMR without detailed
understanding of all the pieces. Static polymorphism also forces
OMR developers and OMR consumers to use some conventions that
are uncommon for C++ to ensure it works as expected. Due to these
drawbacks, OMR developers are currently considering switching
to dynamic polymorphism to enable the explicit definition of exten-
sion points using the virtual keyword. The hypothesis is that, in
practice, changing the extension points to dynamic polymorphism
would not add a significant cost to the runtime performance of the
product. In order to investigate this hypothesis, OMR developers
need to have a better understanding of the current hierarchies in the
code and how/if downstream projects (i.e., additional programming
languages) use the various functions in the code.

Contributions of this Paper. In this paper, we report on how we
supported OMR developers with their variability implementation
decisions. Specifically, we created a Clang (a C family front-end
for the LLVM compiler [3]) [1] plug-in, called OMRSTATISTICS,
that (1) visualizes the class hierarchy from OMR’s current static
polymorphic implementation, (2) visualizes the function overloads
and overrides with their respective locations in the source code,
(3) collects important information about the classes and functions
(such as lists of functions in each class and callsite information),
and (4) stores all the collected information in a database for further
analysis. Running OMRSTATISTICS on the OMR code showed that
client developers have to search in a wide range of classes for the
functions (extension points) they need to extend in order to connect
their language with OMR. In addition, we found out that only 3.4%
of all the functions in these classes are expected to be extended.
Powered with this information, OMR developers now believe that
changing to dynamic polymorphism will (1) make it clearer and
more intuitive for developers to find the right extension points to
use when extending OMR with their language, and at the same
time (2) will have a minimal impact on the run-time performance
of OMR.

Paper Organization. The rest of this paper is organized as fol-
lows. Section 2 presents some background information about the
Eclipse OMR project, which is the target of our OMRSTATISTICS
tool. In Section 3, we describe the problem of static vs. dynamic
polymorphism in more details to motivate the need for OMRSTATIS-
TICs. Section 4 describes the details of OMRSTATISTICS. Section 5
describes the statistics we obtained by applying OMRSTATISTICS to
OMR, as well as how OMR developers used these results. Section 6
presents related work and Section 7 concludes this paper.

2 BACKGROUND: ECLIPSE OMR

In this section, we describe the open-source project Eclipse OMR
and its variability implementation in more detail.

2.1 Eclipse OMR

Java runtime technology has benefited from hundreds of person
years of development investment over the last two decades, result-
ing in a highly capable and scalable dynamic language that delivers
powerful performance and has a vibrant developer ecosystem. The
Eclipse OMR project aims to expand access to high quality runtime
technologies for other dynamic languages through an ongoing ef-
fort to restructure the core components of IBM’s J9 Java Virtual
Machine (JVM). The project was open sourced in March 2016, and
intends to unlock the inner workings of the JVM, without imposing
Java semantics, to create a common platform for building language
runtimes [2].

Eclipse OMR is mostly written in C++. It includes a dynamic
Just-In-Time (JIT) compiler, a garbage collector, a platform abstrac-
tion library, and a set of developer tooling capabilities. These OMR
components can easily be integrated into an existing runtime by
language developers, providing support on different hardware ar-
chitectures: X86(AMD64 and 1386), Power, and Z. In this paper, we
will focus our discussions and experiments on the JIT compiler
component of the Eclipse OMR project. Considering that Eclipse
OMR works with different languages and architectures, it has been
designed with software variability in mind. It can be thought of as
an SPL, where each combination of language and architecture is a
variant or product.

2.2 Variability Implementation

OMR is designed to support the five architectures mentioned above
and any number of programming languages. Ignoring some low-
level details that we will not discuss in this paper, OMR’s variabil-
ity implementation can be reduced to three main ideas: a nested
directory structure corresponding to different layers in the imple-
mentation, static polymorphism, and include path variability.

2.2.1 Directory Structure. Since supporting architectures im-
plies that classes must have different implementations, each class is
declared in different directories representing the different architec-
tures supported in the project. Each declaration includes an imple-
mentation for a specific architecture. Figure 1 shows an example of
a class, TreeEvauator, which is implemented differently depending
on the host architecture. TreeEvaluator is declared in the header
file OMRTreeEvaluator.hpp, which is found in the directory of every
architecture (under the subdirectory: codegen). Notice that the dif-
ferent header files all share the same name; this is a critical fact that

Using Static Analysis to Support Variability Implementation Decisions in C++

Compiler

codegen
L— OMRTreeFvaluator. hpp

x86

codegen
L OMRTreefvaluator.hpp
i386
L__ codegen
OMRTreeFvaluator.hpp

AMD64
L codegen

OMRTreeFvaluator.hpp

Power
L__codegen

L onRTrectvaluator. hpp
—Z

L__codegen
OMRTreefvaluator.hpp

——ARM
L codegen
L OMRTreeFvaluator.hpp

Figure 1: Example of OMR Directory Structure

allows the include path variability to function correctly. However,
each declaration in a file uses a namespace that corresponds to
the directory it is in (more in Section 2.2.2). Functionality that is
common to multiple architectures would reside in a common parent
directory. For example, the common TreeEvaluator implementation
for 1386 and AMD64 architectures resides in a TreeEvaluator class
in X86 directory. Note that OMR consists of more than 1,000 classes
that build up its various functionality across multiple architectures.
However, only certain classes are meant to be extended by users.
Such classes, called extensible classes, are tagged with a keyword,
OMR_EXTENSIBLE, when they are declared.

2.2.2 Static Polymorphism. We use the notion of specialization
to reflect on the "concreteness" of a namespace: a specialized names-
pace is one that contains the implementation of a specific archi-
tecture whereas a less specialized namespace is one that contains
implementation common to multiple architectures. In that sense, a
namespace that contains implementation for AMD64 architecture
is more specialized, or specific, than a namespace that contains
implementation for X86 architecture in general.

In order to explain the static polymorphism part of the variability
implementation, we take one example of a class in OMR that has
a varying implementation depending on the host architecture. As
shown in Figure 2, the MemoryReference class is found in multiple
namespaces, The namespace signifies the architecture that this
MemoryReference implementation targets. Each MemoryReference
class inherits from a class with the same name in a more general
namespace. For example, OMR: : X86: : AMD64: : MemoryReference
inherits from OMR: : X86: :MemoryReference.

The current hierarchy means that there are multiple classes
that have the name MemoryReference, but these classes have dif-
ferent namespaces and implementations depending on the target
architecture: when compiling for AMDé64, the appropriate Memo-
ryReference class that should be used by the rest of the project is
OMR::AMDG64::MemoryReference, whereas when compiling for 1386,
the appropriate class is OMR: : I386: :MemoryReference. The idea
is that we should simply be able to include and use MemoryReference
anywhere in the code, and get the right implementation according

SPLC 18, September 10-14, 2018, Gothenburg, Sweden

OMR::

MemoryReference
Extends” Extends . “Extends_
— s Extends —
OMR::X86:: OMR::Z: OMR::P:: OMR::ARM::
MemoryReference| | MemoryReference | |MemoryReference MemoryReference

\I\Extends

OMR::X86::AMDG64.::
MemoryReference

=

N
N
Extends

<<typedef>>
OMR::MemoryReferenceConnector
Ay

Extends
|

‘ lang::MemoryReference ‘

Extends
|

‘ TR::MemoryReference ‘

Figure 2: Example of a Class Hierarchy in OMR

to the architecture we are building for. To be able to accomplish
such behavior, OMR developers created the namespace TR which
always extends the right MemoryReference class. If, for instance, the
TreeEvaluator class is calling a function from MemoryReference, it
would use TR: :MemoryReference and trust that the latter is point-
ing to the right MemoryReference hierarchy base. Hence, every
hierarchy is expected to terminate with a ‘concrete’ class, which is
in the TR namespace.

In order to find the right base class that TR: :MemoryReference
should extend, OMR developers created a Connector class for each
hierarchy. For MemoryReference, that class would be OMR: :Memory-
ReferenceConnector, and the TR: :MemoryReference class would
extend this connector class (See Figure 2). Each implementation
of the MemoryReference would then have a typedef between
OMR: :MemoryReferenceConnector and its own class. Each type-
def is protected (similar to the idea of include guards), such that
only one typedef is seen by the compiler in a given configuration.
Based on the include path prioritization (Section 2.2.3), the typedef
in the most specialized class will always be seen first and thus will
be the class that TR: :MemoryReference extends. Note that all the
concrete types to be used are determined at compile time.

In order to make sure that static polymorphism works as ex-
pected, OMR developers had to introduce a code convention that
must be used. Consider Figure 3, when calling function a() from
class C, the compiler would use the this pointer, which points
to class C, and call this->a(). After not finding the function, it
would refer to class B and try calling this->a(). Note that the this
pointer is now pointing to class B and not class A. After not finding
a() in class B, it would refer to class A and try calling this->a().
When executing the implementation of A: : a(), the compiler would
reach Line 6, where it should execute this->b(). Since the com-
piler is executing a function of class A, this points to class A, and
A: :b() would be executed. However, based on the intended OMR

0 N NG R W N

S I N I N I R R R N N O i e e e e
S O P TIRAERE DN = OO 0T U RN = O O

SPLC 18, September 10-14, 2018, Gothenburg, SwedenSamer AL Masri, Sarah Nadi, Matthew Gaudet, and Xiaoli Liang, Robert W. Young

Listing 1: Example to demonstrate the desired behavior with
static polymorphism. On Line 6, function b from class B
should be invoked instead of that from class A

class A{
public:
AQ) {}s
void a() {
printf("function a from class A\n");
b(); //change to self()—>b();
}
void b() {
printf("function b from class A\n");
}
}s

class B : public A {
public:

BO) {}

void b() {

printf("function b from class B\n");
}
}s

class C :
public:

cO {h
}s

public B {

int main() {
C instance;
instance.a();
return 0;

}

behavior where functionality from the most specific class needs to
be called, the compiler is supposed to call B: :b() since class B is
the first parent class of C that contains an implementation of b().
To ensure this behavior, OMR developers created a self () function
that always returns a pointer to the most specific or concrete class
in a hierarchy; in our example, self () would return a pointer to C.
Therefore, the convention in OMR is to use self () instead of this
to call any fields or functions from an instance of an extensible
class. Thus, the call on Line 6 would be self()->b().

2.2.3 Include Path Variability. The case in Figure 2 touches on
another complication: if in some cases, the most specific architec-
ture does not have a declaration of some class, how would the
compiler know that it should search in the parent directory? Here
is where the include path prioritization compiler feature is used.

In order to compile a MemoryReference class for 1386 architec-
ture, the include paths passed to the compiler in the build system
would be as follows: -Iomr/compiler/x/i386/codegen -Iomr-
/compiler/x/codegen -Iomr/compiler/codegen. The order is
important, because compilers prioritize the paths passed first when
resolving #include references. Hence, in the above case, the com-
piler would search for OMRMemoryReference.hpp in omr/compiler-
/x/i386/codegen/ first and would not find the class (since there is no
specific implementation for I386). After that, the compiler searches
for it in omr/compiler/x/codegen and finds the file there.

2.2.4 Hierarchies. Looking at the bigger picture, each class in
OMR is basically a hierarchy of classes, starting from the OMR

Extends

B
+ void b()

Extends

Figure 3: UML diagram for Listing 1

namespace, and ending in the most specific namespace of the ar-
chitecture. It is important to note that at compile time, the hi-
erarchy would be linear based on the architecture and language
used. For example, when compiling for AMD64 architecture, the
hierarchy of classes for MemoryReference would be as follows:
OMR::MemoryReference —> OMR::X86::MemoryReference — OMR::-
X86:AMD64::MemoryReference. Whereas when compiling for Power
architecture, the hierarchy would be: OMR::MemoryReference —>
OMR::Power::MemoryReference.

Since the library is intended to be used by a language devel-
oper, developers are expected to extend OMR’s classes in a new
namespace called after the target language. For example, when
having Ruby as a consumer of the OMR technology on AMDG64,
developers would create Ruby: :MemoryReference that extends
OMR: :MemoryReferenceConnector which, in that case, is type-
def’d to OMR: : X86: : AMD64 : :MemoryReference.

2.3 OMRChecker

As mentioned in the introduction, this implementation of static
polymorphism, include path variability, and directory structure
obliges developers to follow some conventions when extending the
extensible classes. One convention is that all implementations of
a type are declared in classes with the the same name but reside
in different namespaces (such as OMR: : X86: :MemoryReference).
Another convention is using the self() function instead of the
this pointer. In order to enforce such conventions on developers,
OMR developers created a Clang plug-in, called OMRChecker, to
statically analyze the code and verify that no client code breaks
this convention. OMRChecker only checks classes tagged with
OMR_EXTENSIBLE since these are the only classes meant to be ex-
tended.

Using Static Analysis to Support Variability Implementation Decisions in C++

3 PROBLEM DESCRIPTION

Polymorphism is one way of implementing variability where the
same function may have different behavior depending on the re-
ceiver type [18]. The receiver type can either be determined at
run time (dynamic polymorphism) or at compile time (static poly-
morphism). In this section, we discuss the pros and cons of static
polymorphism when put into perspective with the OMR project,
and how switching from static to dynamic polymorphism for the
extensible parts of OMR may positively impact the project’s source
code and efficiency.

3.1 Dynamic vs Static Polymorphism

Dynamic polymorphism is implemented by adding the virtual
keyword to the function that is intended to be overridden. To re-
solve a virtual function, the program follows a pointer to the right
version of the function [14]. Due to the virtual keyword, dynamic
polymorphism makes it easier to spot the variability points of a
class, i.e., the functions whose functionality might differ in other
classes in the hierarchy. However, dynamic polymorphism intro-
duces a run-time overhead when following pointers to find the right
implementation of a function. This might impact program perfor-
mance if the number of virtual function calls is high, which is why
OMR developers moved away from using dynamic polymorphism.

On the other hand, with static polymorphism, no virtual key-
word is used. Given a function call, the compiler would start search-
ing for the implementation of the function in the caller class. If the
function is not found, the compiler would search for the function
in the parents of that class and so on. Hence, at compile time, all
functions are linked to their right implementation. This positively
impacts the run time of the program, when comparing it to dynamic
polymorphism.

3.2 Consequences of Static Polymorphism in
OMR

The choice of static polymorphism in OMR has multiple downsides:
(1) it does not clearly identify the extension points where client de-
velopers are supposed to extend OMR in their new language and (2)
it obliges developers to follow certain code conventions for the poly-
morphism to work successfully, such as using the OMR_EXTENSIBLE
tag and the self () function mentioned earlier.

These conventions may sometimes be a deterrent for language
developers. For example, in the case of a class that has some func-
tions that are intended to be extended and others that are not, a
class tag would not be very helpful. In this case, using dynamic
polymorphism and adding the keyword virtual for functions that
should be extended would be a better idea.

Using the self () function when calling a method of the same
object is not a C++ convention that developers are used to; the
default way is to use this. Similarly, for class static functions,
developers must take care to write their static function calls using
the most concrete class in the TR namespace to ensure that static
methods can be overridden via static polymorphism as well. Code
with incorrect usage of these conventions will still successfully
compile, and but will dispatch to the wrong function; this makes
developing code for OMR unintuitive.

SPLC 18, September 10-14, 2018, Gothenburg, Sweden

Therefore, in summary, static polymorphism is adding conven-
tions that the community contributors are obliged to follow, making
the code less approachable and harder to read.

3.3 Moving to Dynamic Polymorphism

Given the above downsides, some of the OMR developers are advo-
cating the change to dynamic polymorphism. The current hypothe-
sis is that the vast majority of specialization exists in methods that
are not called with a sufficient frequency to substantially impact
run time speed and that furthermore, switching to dynamic poly-
morphism may in fact improve the compilation performance by
allowing the compiler to do a better job building the source code.
This improvement would be due to the ability to declare functions
in header files, allowing the build compiler to inline more functions.

In order to test this hypothesis and collect more information to
help OMR developers reach a decision, we created a tool, OMRSTATIS-
TICS, that analyzes the methods and classes of OMR’s source code.
OMRStatistics can be helpful in multiple ways: first, the informa-
tion provided would help check whether the amount of overridden
functions in extensible classes is enough to significantly impact per-
formance if virtualized. In addition, OMRStatistics will help OMR
developers document the API boundaries, and reason about exten-
sibility on a per-method/API basis. In summary, OMRSTATISTICS
helps developers reason about the variability in their source code.

In fact, all the information collected in OMRStatistics is stored
in a database, which helps OMR developers answer their questions
through querying the database. Some of their main concerns when
considering to change to dynamic polymorphism are found in these
questions:

e Q1: How many total classes are there in OMR and how many
of these are extensible classes?

e Q2: How many methods do we have in total and how many
of them are overridden in client/extension code?

e Q3: Is most functionality added through static polymor-
phism?

4 OMRSTATISTICS

In order to get more information about the source code in OMR,
we created OMRStatistics. OMRStatistics is an open source static
analysis tool, built as a Clang plugin [4]. It records the parent-child
class relationships in the source code, and collects information
about the methods in these classes. This information includes their
source location, where they have been overridden, and whether they
are virtual or implicit. OMRStatistics records all this information in
a database to make it easier for developers to query. Additionally, it
provides visualizations of the information in the form of diagrams
and HTML pages. While we currently only ran OMRSTATISTICS on
OMR, it is important to note that the nature of the tool as a Clang
plugin allows it to run on any source code that can be compiled by
Clang, hence it does work on any C++ project.

We now describe how OMRStatistics works, the output files it
produces, and the database where this information is eventually
stored.

SPLC 18, September 10-14, 2018, Gothenburg, SwedenSamer AL Masri, Sarah Nadi, Matthew Gaudet, and Xiaoli Liang, Robert W. Young

OMR::StaticSymbol::StaticSymbol(TR::DataType.void *)
OMR::StaticSymbol::StaticSymbol(TR::DataType)
OMR::Symbol::getName()

OMR ::StaticSymbol::~StaticSymbol()

Hide Implicit Declarations

--OMR::Machine::~Machine()
-~ OMR::X86::Machine
~OMR.:X86::AMDG64.:Machine
. L.TR::Machine
“~OMR::X86::1386::Machine
i.TR::Machine

~~OMR::Power::Machine

t.TR:: Machine
~OMR::Z::Machine

t.TR:: Machine
OMR::X86::RealRegister::RealRegister(TR::CodeGenerator *)
OMR::Register::Register(enum TR_RegisterKinds)
OMR::Register::Register(enum TR_RegisterKinds,uint16_t)
OMR::Register::Register(uint32_t)
OMR::Register::block

Figure 4: Part of the overrides visualizations web page. Orig-
inally, all nodes had the same font-size, and underlined.
Green nodes represent virtual functions and red nodes rep-
resent implicit functions. However, in order to make this fig-
ure compatibe for black-and-white printing, we made only
virtual functions underlined, and implicit functions are ital-
ized and have larger fonts. Pressing the button on top hides
the implicit functions.

4.1 Output Files

When OMRStatistics is run on the OMR source code, it creates
seven CSV output files as follows:

o allClasses.csv: contains a record for each class. The record
includes the class name, the namespace it resides in, and
whether this class is extensible or not.

o allFunctions.csv: contains a record for every function. The
record includes the function name, signature, class which this
function belongs to, and whether this function is implicitly
declared and/or virtual.

e functionLocation.csv: contains the information that links ev-
ery function to the source file location where it was declared.

e hierarchy.csv: contains two fields in each record. The first
one indicates whether this hierarchy is extensible or not.
The second field is a textual serialization of that hierarchy.
The hierarchy is represented in the following form: class —>
parent 1 —> ... —> parent n.

e overloads.csv: includes a record for every override of a func-
tion in OMR. Each record includes the base class, the signa-
ture of the overridden function, and the overriding class

o overrides.html: a web page that visualizations the overrides

present in OMR. Figure 4 shows an excerpt of this visualiza-

tion.

hierarchy.pdf: a PDF file that visualizes the class hierarchies.

A screen shot of the visualization is in Figure 5

4.2 OMRStatistics Setup

Since OMRStatistics is implemented as a Clang plugin, it runs
its analysis while compiling a given source file. In order to run

OMR::X86::AMD64::Machine::Machine(TR::CodeGenerator *)

OMR:: TreeEvaluator

e A <7

| OMR::X86:: TreeEvaluator

| OMR::Power:: TreeEvaluator

| OMR::Z:: TreeEvaluator

OMR::X86::AMD64:: TreeEvaluator | OMR::X86::1386::TreeEvaluator

TR::TreeEvaluator

Figure 5: Hierarchy visualization file

OMRStatistics on the whole OMR source code, the whole source
code has to be compiled by Clang. For a given compilation, OMR
would need to already be configured with the combination of archi-
tecture and programming language to build for. This means that
only a subset of the source files would be analyzed in any given
build. Analyzing all variants of the source code means compiling
OMR multiple times with all possible combinations of architectures
and languages. At the moment, OMR has a relatively small number
of variants due to the handful number of languages that use OMR.
However, we expect that the number of variants to rapidly increase
as more languages start using the OMR technology. Although for
now, we will individually run OMRSTATISTICS on all variants and
then aggregate the results, it is part of our future work to edit Clang
such that we can leverage the similarities between variants and run
the tool on less number of files [35].

4.3 OMRStatistics Approach
OMRStatistics works in three phases. The first phase starts by call-

ing a class named HMRecorder, an extension of Clang’s RecursiveASTVisitor

class which goes through the declarations of classes and methods.
HMRecorder processes all declarations found in the source code and
saves the following: (1) a mapping between each class declaration
and its method declarations, (2) whether classes are extensible or
not, (3) whether a function is implicit or not, (4) mapping between
each class declaration and its parent declarations.

The second phase is carried out in class HMConsumer, which
consumes the information recorded by the HMRecorder, processes
it, and outputs it in the relevant CSV output files. More specifically,
the HMConsumer creates a node for each class or parent found in
the previous phase, and connects them together according to the
mapping between class and parent declarations. On the other hand,
HMConsumer also creates a data structure for each method signature
(called MethodTracker object). By using the mapping (provided by
HMRecorder) between every class and its methods, the tool keeps
track of all the method signatures occurrences in MethodTrackers.

The third phase is triggered automatically by the build system
after compiling the project using Clang (the first and second phases).
In this phase, python scripts process the CSV files trimming the
outputs of duplicate records (due to compiling for all configurations,
files might be compiled more than once, resulting in duplicate
records), creating an SQL file to build the database, and generating
multiple visualization files from the output files of previous phases.

Using Static Analysis to Support Variability Implementation Decisions in C++

Function Class Polymorphism

o
ES

FunctioniD PK | ID PK,FK| HierarchylD

FunctionName Namespace PK,FK| Child ClassiD

Signature ClassName PK FK | ParentClassIiD
ClassID IsExtensible
isvirtual

o
=

isimplicit Hierarchy

FilelD pK‘;K| D
Override
FK I Base ClassiD
PK‘FK| Basefunctionld
File
PK, FK | OverridingFunctioniD

PK‘ID

B
=

‘ Location

Figure 6: OMRStatistics relational database schema

4.4 Database

OMRStatistics produces a database that can be queried to find
different information about how the functions are used. Figure 6
shows the relational database schema. The Function and Class tables
contain all the functions and classes found in the project. The
Function table defines each function by an ID. The record contains
the name and signature for each function, whether this function is
virtual or implicit, the header file where this function is declared,
and to which class this method belongs. The Class table contains a
record for each class, mentioning its name, namespace, and whether
it is extensible. Similarly, the File table contains information about
the source locations of declarations. For now, we keep track of the
file location only; however, it is kept in a separate table in case
more information is needed about the source locations. The class
relationships are also saved in the Polymorphism and HierarchyBase
tables. Finally, the override relationships are found in the Override
table.

5 RESULTS AND ANALYSIS

In this section, we discuss the three questions raised by OMR devel-
opers about their current static polymorphic implementation and
how OMRSTATISTICS is able to answer these questions and help
them move one step closer to the best variability decision for the
project. In order to explore the impact of moving forward with dy-
namic polymorphism, we run OMRSTATISTICS on the souce code of
OMR and OpenJ9. Open]9 is an IBM Java Virtual Machine that uses
the OMR library and is the biggest consumer of OMR technology.

5.1 Data About Extensible Classes

Question 1: How many classes are in OMR altogether and
how many of them are made into extensible classes? Query-
ing the database shows that 149 of the 1365 classes in OMR (~10.61%)
are marked as extensible. Considering only the extensible classes,
the functions which OMR downstream projects are expected to ex-
tend are spread in 142 classes (~7.38% of total classes). This means
that OMR downstream language developers have to look through
all of these classes and decide which functions they need to override
to provide the desirable behavior for their project while leveraging
the rest of the OMR code. Searching through such a large num-
ber of classes for extension points is not ideal. With the switch
to dynamic polymorphism, the functions that are intended to be
extension points will be made into virtual functions. This will make
all possible extension points easy to find for OMR downstream
project developers.

SPLC 18, September 10-14, 2018, Gothenburg, Sweden

5.2 Data About Overridden Functions

Question 2: How many methods are there in all OMR exten-
sible classes and how many of them get overridden?

The corresponding database queries reveal that OMR has 8,336
methods in extensible classes and only 466 of these methods, roughly
5.6%, are overridden. Based on the hypothesis of OMR developers
(mentioned in section 3.3), the proposal is to virtualize functions
that are extended in OMR. OMR developers are encouraged by the
small percentage of methods that would need to be virtualized,
but further run-time profiling is needed to determine the possible
run-time overhead since it depends on how often these function
will be called.

5.3 Data About Extensible Class Hierarchies

Question 3: Is most functionality added through static poly-
morphism?

New functionality in OMR can be added either by adding new
methods in derived classes or by overriding existing methods and
alerting their behavior. When analyzing the source code of the
product resulting from OMR and Open]9, we find 83 extensible hi-
erachies and calculated the average class hierarchy depth to be 4.05
classes. We also find that on average, only 14.15% of an extensible
hierarchy’s functions are overridden. This implies that the majority
of variability points in OMR are not in the form of method overrides,
but are instead in the form of additional new functionality in the
derived classes. In other words, the low percentage of overridden
functions suggests that client developers extend OMR mostly by
adding new functionality in derived classes instead of overridding
existing functions. Hence, moving from static polymorphism to dy-
namic polymorphism will only affect a low percentage of functions
and variability points and hence is likely to have a minimal impact
on the performance of OMR.

Note that while we only answer these three questions here, the
data gathered by OMRStatistics in the database allows OMR devel-
opers to query for additional information about the class hierarchies
and function overloading/overriding in OMR and Open]9.

5.4 Moving Forward with Dynamic
Polymorphism

The previous facts and data demonstrate why it is favorable to
change from static to dynamic polymorphism. However, there will
be some extra work, beyond simply adding the virtual keyword
to functions, as the existing variability mechanism allows certain
imprecisions in implementation.

One such challenge will be missing base-class implementations.
Consider Figure 7, a function a() is declared and implemented
in class A of all supported architectures of OMR: OMR: : X86: : A,
OMR: :Power: :A,OMR: : ARM: : A,and OMR: : Z: : A; however, it is never
declared in OMR: : A. This currently works with the use of self ()
when calling a() since the search for the function is bound to start
at the bottom of the hierarchy. However, when virtualizing class A,
if OMR: : A: :b() refers to this->a(), the compiler will throw an er-
ror as function a() is not defined in this class. One solution for this
challenge is to statically analyze the function calls in the project,
finding such cases and defining them in their respective class in
the OMR namespace in order to prevent the project from throwing

SPLC 18, September 10-14, 2018, Gothenburg, SwedenSamer AL Masri, Sarah Nadi, Matthew Gaudet, and Xiaoli Liang, Robert W. Young

Challenges Example.png
OMR::A
+b() :int
7
e
Extends Extends Extends Extends
OMR::X86::A OMR::Power::A OMR::Z::A OMR::ARM::A
+a():int +a():int +a():int +a():int

Figure 7: Example of foreseen challenge when changing to
dynamic polymorphism

a compilation error when moving to dynamic polymorphism. This
solution is part of our future work.

6 RELATED WORK

The goal of OMRSTATISTICS is to help OMR developers make better
design decisions related to the variability implementation of OMR;
hence, we discuss related literature in the following directions: (1)
variability implementation mechanisms, to review classical and
previous variability mechanisms adopted by others, (2) variability
evaluation metrics offering a better understanding of the effect
variability implementations might have on configurable products,
and (3) tools that support software variability. Given the industrial
context of our paper, we give practical applications of related work,
when applicable.

6.1 Variability Implementation Mechanisms

In their report [9], Bechmann. et al. discuss how to make edu-
cated decisions about including variability mechanisms in software
product lines and provide an overview of some key variability im-
plementations. Some of the mentioned implementations that we
will be discussing further are: parameters, plug-ins or framework
programming, and inheritance.

Parametrization is using parameters to change a general pro-
gram’s behavior [24]. The software would contain the implemen-
tation for all its variants and the parameters would control which
variant is executed. MADAM [23] project is a practical example
of a project that uses parametrization as part of their variability
implementation.

Another variability implementation used in practice is the frame-
work variability mechanism. It is based on using an initial imple-
mentation or code base that can be reused to create solutions for
different use cases presented by costumers. What makes a frame-
work based mechanism different than other variability mechanisms
is the explicit extension points, called hot spots [8]. One subcategory
of the framework variability mechanism is the black-box frame-
work [40] which is used in Firefox [47]. A configurable software
that is developed to conform to the black-box framework is de-
signed such that it facilitates creating independent subapplications
that extend its functionality. For example, Firefox has the concept
of plugins, where user developers can create plugin software inde-
pendantly without understanding the Firefox source code or how
it is implemented.

However in practice, it is common for software to use multiple
variability implementations at once. For instance, Mozilla Firefox
uses the black-box component and the broker pattern [47]. The bro-
ker pattern [16, 39] falls under another variability implementation
mechanism, design patterns. Other popular design patterns used in
variability [8] include the observer pattern [25] and the template
pattern [36].

Another way to implement variability is through inheritance [7].
In our previous position paper [35], we described the OMR project
and how it uses static polymorphism to implement variability
along with the challenges OMR developers currently face. The
OMRSTATISTICS tool we present in this paper is a concrete realiza-
tion for addressing one of the challenges we discussed there.

For a complete list of possible variability implementation strate-
gies, we refer the reader to the work by Apel et al. [7].

6.2 Variability Metrics

Various variability metrics have been proposed to evaluate variabil-
ity implementations in product lines. Liebeg et al. [33] analyze more
than forty CPP projects according to metrics introduced by the au-
thors, suggesting alternative variability implementations. Hunsen
etal. [26] study twenty seven CPP projects in order to study the sim-
ilarity between CPP implementation in open source and industrial
projects. In their paper, the authors define the similarity between
implementations by a set of variability metrics. Andre et al. [46]
use the concept of service utilization to come up with evaluation
metrics for variability in SPLs.

Since OMRSTATISTICS proposes altering the variability imple-
mentation mechanism in Eclipse OMR, a potential future work
would be to use, an adaptation of, the variability metrics proposed
in literature to assess the new variability implementation.

6.3 Tools Supporting Variability

There are various research and industrial tools developed to support
reasoning about software variability.

Based on a survey done by Berger et al. [15], the two most com-
mon industrial variability modeling tools used to support variability
are pure: :variantsand GEARS. Pure: :variants is a feature mod-
eling plugin for Eclipse that adds variability support to Eclipse [5]
in order to support product line variability development. How-
ever, there are other feature modeling plugins for Eclipse such
as FeaturePlugin [6]. There also exists tool suites that support
variability development such as DOPLER [21] and the AHEAD [10].

On the other hand, GEARS is a code analysis tool developed by
BigLever Software that focuses on software mass customization in
software product lines [32]. Mass customization was also tackled
by Ronny et al. [30]. In their research, Ronny et al. use the PuLSE
approach [13] to convert a product into a reusable core component
of a product line. It is worthy to note that Eclipse OMR also started
as a single product which was then transformed to the core of a
product line, as described in our position paper [35].

Other tools support variability by analyzing the source code and
providing insights about the project. For example, FeatureIDE [45]
is a variability aware IDE that analyzes projects and maps their
code artifacts to features. RequilLine [48] is a tool that supports
requirements engineering in SPLs.

Using Static Analysis to Support Variability Implementation Decisions in C++

Another tool that offers variability aware analysis is Typechef [29].
Typechef aims to analyze all variants of a configurable software,
implemented using C and the C preprocessor. It works by prepro-
cessing the source code into conditionalized tokens that are then
parsed into conditional ASTs. These ASTs are then used as the basis
of many analyses. However, Typechef was developed to analyze
software written in C (and Java). It currently does not support C++
projects. In addition, it supports projects whose variability is imple-
mented using only preprocessor directives, which is not the case in
Eclipse OMR. Hence, we were not able to leverage its capabilities
in our research.

Various other techniques are used to support variability. Eisen-
barth et al. [22] use concept analysis, alongside with static and
dynamic analysis, to correlate source code blocks to sets of features.
Concept analysis is also used by Krone et al. [31] to extract configu-
ration dependencies for projects whose variability is implemented
with C preprocessors (CPP) [26], and by Loesh et al.[34] to visualize
product features and configurations. Another tool that supports
projects with CPP variability implementations is created by Baxter
et al. [11]. Their tool uses DMS, a transformation system used to
gradually alter and orient a software’s design for more efficient
maintenance [12] by neatly removing preprocessor configurations
of unsupported features.

Different from above, OMRSTATISTICS Works by statically ana-
lyzing the Eclipse OMR code, to support variability design decisions
by collecting information about the project’s variability points. De-
velopers can then use this information to decide about any needed
changes to their variability implementation.

7 CONCLUSION

In this paper, we presented an industry system, Eclipse OMR, that
uses static polymorphism to impelement variability. We provide
evidence to help developers assess how changing OMR’s variability
implementation mechanism to dynamic polymorphism will impact
the overall performance and complexity of the project.

During the development of OMR, developers had to make some
design decisions to overpass the faced challenges. One decision
was to use static polymorphism instead of dynamic polymorphism
in order to protect the runtime performance from being impacted.
However, after progressing in the development of the project as a
product line, OMR developers have been realizing some problems
with the static polymorphism implementation: the obscurity of
extension points and the complexity added by the resulting code
conventions. Hence, OMR’s variability implementation design is
being revisited.

The hypothesis of OMR developers is that virtualizing the func-
tions that act as extension points of the project will not have a
significant impact on the runtime performance. Attempting to mo-
tivate or discourage this hypothesis, we created a tool, OMRSTATIS-
TICS, that statically analyzes the code and extracts the information
needed to make this decision.

Based on the information we collected, switching the extension
points will theoretically not have a significant impact on the run-
time performance of the tool. However, the actual impact can only
be measured by progressively changing extension points to dy-
namic polymorphism and observing the impact on performance.

SPLC 18, September 10-14, 2018, Gothenburg, Sweden

Our future plan is to gradually suggest to OMR developers functions
that can be changed to use dynamic polymorphism instead of static
polymorphism, and measure the impact on runtime performance.

8 ACKNOWLEDGEMENT
This project is funded by IBM CAS 2017 Project #40.

REFERENCES

[1] [n.d.]. clang: a C language family frontend for LLVM. ([n. d.]). https://clang.
llvm.org/

[2] [n.d.]. Eclipse OMR: Building Language Runtimes for the Cloud. ([n. d.]). https:
/[www.eclipse.org/community/eclipse_newsletter/2016/october/article5.php

[3] [n.d.]. The LLVM Compiler Infrastructure. ([n. d.]). http://llvm.org/

[4] [n.d.]. OMRStatistics Github Repository. ([n. d.]). https://github.com/samasri/
omr/tree/master/tools/compiler/OMRStatistics

[5] [n. d.]. pure:variants Eclipse Plug-in User’s Guide. ([n. d.]).
pure-systems.com/fileadmin/downloads/pv_userguide.pdf

[6] Michal Antkiewicz and Krzysztof Czarnecki. 2004. FeaturePlugin: Feature
Modeling Plug-in for Eclipse. In Proceedings of the 2004 OOPSLA Workshop on
Eclipse Technology eXchange (eclipse "04). ACM, New York, NY, USA, 67-72.
https://doi.org/10.1145/1066129.1066143

[7] Sven Apel, Don Batory, Christian Kstner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines: Concepts and Implementation. Springer Publish-
ing Company, Incorporated.

[8] Sven Apel, Don Batory, Christian Kstner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines: Concepts and Implementation. Springer Publish-
ing Company, Incorporated.

[9] Felix Bachmann and Paul Clements. 2005. Variability in Software Product

Lines. Technical Report CMU/SEI-2005-TR-012. Software Engineering Institute,

Carnegie Mellon University, Pittsburgh, PA. http://resources.sei.cmu.edu/library/

asset-view.cfm?AssetID=7675

Don Batory. 2004. Feature-Oriented Programming and the AHEAD Tool Suite.

In Proceedings of the 26th International Conference on Software Engineering (ICSE

’04). IEEE Computer Society, Washington, DC, USA, 702-703. http://dl.acm.org/

citation.cfm?id=998675.999478

Ira Baxter and Michael Mehlich. 2001. Preprocessor conditional removal by

simple partial evaluation. In Proceedings Eighth Working Conference on Reverse

Engineering. 281-290. https://doi.org/10.1109/WCRE.2001.957833

Ira Baxter and Christopher W. Pidgeon. 1997. Software change through design

maintenance. In 1997 Proceedings International Conference on Software Mainte-

nance. 250-259. https://doi.org/10.1109/ICSM.1997.624252

Joachim Bayer, Oliver Flege, Peter Knauber, Roland Laqua, Dirk Muthig, Klaus

Schmid, Tanya Widen, and Jean-Marc DeBaud. 1999. PuLSE: a Methodology to

Develop Software Product Lines. (01 1999), 122-131 pages.

[14] Eli Bendersky. [n. d.]. The Curiously Recurring Template Pat-

tern in C++. ([n. d.]). https://eli.thegreenplace.net/2011/05/17/

the-curiously-recurring-template- pattern-in-c/

Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker,

Krzysztof Czarnecki, and Andrzej Wkasowski. 2013. A Survey of Variability Mod-

eling in Industrial Practice. In Proceedings of the Seventh International Workshop

on Variability Modelling of Software-intensive Systems (VaMoS ’13). ACM, New

York, NY, USA, Article 7, 8 pages.

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, and Michael

Stal. 1996. Pattern-Oriented Software Architecture.

Rafael Capilla, Jan Bosch, Kyo-Chul Kang, et al. 2013. Systems and Software

Variability Management. Concepts Tools and Experiences (2013).

[18] John Cary, Svetlana G. Shasharina, Julian Cummings, John V. W. Reynders, and
Paul Hinker. 1997. Comparison of C++ and Fortran 90 for object-oriented scien-
tific programming. 105 (09 1997), 20-36.

[19] Paul Clements and Linda Northrop. 2001. Software product lines: Patterns and
practice. Boston, MA, EUA: Addison Wesley Longman Publishing Co (2001).

[20] IBM Corporation. [n. d.]. The OMR Project Source Code. ([n. d.]). https:
//github.com/eclipse/omr

[21] Deepak Dhungana, Rick Rabiser, Paul Griinbacher, and Thomas Neumayer. 2007.
Integrated Tool Support for Software Product Line Engineering. In Proceedings
of the Twenty-second IEEE/ACM International Conference on Automated Software
Engineering (ASE "07). ACM, New York, NY, USA, 533-534.

[22] Thomas Eisenbarth, Rainer Koschke, and Daniel Simon. 2003. Locating Features
in Source Code. IEEE Trans. Softw. Eng. 29, 3 (March 2003), 210-224. https:
//doi.org/10.1109/TSE.2003.1183929

[23] Jackeline Floch, Svein Hallsteinsen, Erlend Stav, Frank Eliassen, Ketil Lund, and
Eli Gjorven. 2006. Using Architecture Models for Runtime Adaptability. IEEE
Software 23, 2 (March 2006), 62-70.

http://web.

[10

[11

=
&

[13

[15

[16

(17

SPLC 18, September 10-14, 2018, Gothenburg, SwedenSamer AL Masri, Sarah Nadi, Matthew Gaudet, and Xiaoli Liang, Robert W. Young

[24] Hassan Gomaa and Diana L Webber. 2004. Modeling adaptive and evolvable [45] Thomas Thum, Christian Kastner, Fabian Benduhn, Jens Meinicke, Gunter Saake,

software product lines using the variation point model. In 37th Annual Hawaii
International Conference on System Sciences, 2004. Proceedings of the.

Jan Hannemann and Gregor Kiczales. 2002. Design Pattern Implementation in
Java and aspect]. In Proceedings of the 17th ACM SIGPLAN Conference on Object-
oriented Programming, Systems, Languages, and Applications (OOPSLA ’02). ACM,
New York, NY, USA, 161-173.

Claus Hunsen, Bo Zhang, Janet Siegmund, Christian Kastner, Olaf Lessenich, Mar-
tin Becker, and Sven Apel. 2016. Preprocessor-based variability in open-source
and industrial software systems: An empirical study. Empirical Software Engi-
neering 21, 2 (01 Apr 2016), 449-482. https://doi.org/10.1007/510664-015-9360-1
Christian Kastner, Sven Apel, and Martin Kuhlemann. 2008. Granularity in
Software Product Lines. In Proceedings of the 30th International Conference on
Software Engineering (ICSE '08). ACM, New York, NY, USA, 311-320. https:
//doi.org/10.1145/1368088.1368131

Christian Kastner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian Erdweg, Klaus
Ostermann, and Thorsten Berger. 2011. Variability-aware Parsing in the Presence
of Lexical Macros and Conditional Compilation. SIGPLAN Not. 46, 10 (Oct. 2011),

and Thomas Leich. 2014. FeatureIDE: An extensible framework for feature-
oriented software development. Science of Computer Programming 79 (2014), 70 —
85. Experimental Software and Toolkits (EST 4): A special issue of the Workshop
on Academic Software Development Tools and Techniques (WASDeTT-3 2010).

[46] Andre van der Hoek, Ebry Dincel, and Nenad Medvidovic. 2003. Using service

utilization metrics to assess the structure of product line architectures. In Pro-
ceedings. 5th International Workshop on Enterprise Networking and Computing in
Healthcare Industry (IEEE Cat. No.03EX717). 298-308. https://doi.org/10.1109/
METRIC.2003.1232476

[47] Jilles van Gurp, Jan Bosch, and Mikael Svahnberg. 2001. On the notion of vari-

ability in software product lines. In Proceedings Working IEEE/IFIP Conference on
Software Architecture. 45-54.

[48] Thomas von der MaA§en and Horst Lichter. 2004. RequiLine: A Requirements

Engineering Tool for Software Product Lines. In Software Product-Family Engi-
neering. Springer Berlin Heidelberg, Berlin, Heidelberg, 168-180.

Minghui Yang, Chandrasekharan Iyer, and Charles Wetherell. 2006. Method and
apparatus for performing conditional compilation. (2006).

805-824.

[29] Andy Kenner, Christian Kastner, Steffen Haase, and Thomas Leich. 2010. Type-

Chef: Toward Type Checking #Ifdef Variability in C. In Proceedings of the 2Nd

International Workshop on Feature-Oriented Software Development (FOSD °10).

ACM, New York, NY, USA, 25-32. https://doi.org/10.1145/1868688.1868693

Ronny Kolb, Dirk Muthig, Thomas Patzke, and Kazuyuki Yamauchi. 2005. A

case study in refactoring a legacy component for reuse in a product line. In

21st IEEE International Conference on Software Maintenance (ICSM’05). 369-378.

https://doi.org/10.1109/ICSM.2005.5

Maren Krone and Gregor Snelting. 1994. On the Inference of Configuration

Structures from Source Code. In Proceedings of the 16th International Conference

on Software Engineering (ICSE *94). IEEE Computer Society Press, Los Alamitos,

CA, USA, 49-57. http://dl.acm.org/citation.cfm?id=257734.257742

CharlesW. Krueger. 2002. Easing the Transition to Software Mass Customization.

In Software Product-Family Engineering, Frank van der Linden (Ed.). Springer

Berlin Heidelberg, Berlin, Heidelberg, 282-293.

[33] J. Liebig, S. Apel, C. Lengauer, C. KAdstner, and M. Schulze. 2010. An analysis
of the variability in forty preprocessor-based software product lines. In 2010
ACM/IEEE 32nd International Conference on Software Engineering, Vol. 1. 105~
114.

[34] Felix Loesch and Erhard Ploedereder. 2007. Optimization of Variability in Software

Product Lines. In 11th International Software Product Line Conference (SPLC 2007).

151-162. https://doi.org/10.1109/SPLINE.2007.31

Samer Al Masri, Nazim Uddin Bhuiyan, Sarah Nadi, and Matthew Gaudet. 2017.

Software Variability Through C++ Static Polymorphism: A Case Study of Chal-

lenges and Open Problems in Eclipse OMR. In Proceedings of the 27th Annual

International Conference on Computer Science and Software Engineering (CASCON

’17). IBM Corp., Riverton, NJ, USA, 285-291. http://dl.acm.org/citation.cfm?id=

3172795.3172831

[36] James E. McDonough. 2017. Template Method Design Pattern. Apress, Berkeley,
CA. 247-254 pages.

[37] Sarah Nadi, Christian Dietrich, Reinhard Tartler, Richard C. Holt, and Daniel
Lohmann. 2013. Linux Variability Anomalies: What Causes Them and How
Do They Get Fixed?. In Proceedings of the 10th Working Conference on Mining
Software Repositories (MSR ’13). IEEE Press, Piscataway, NJ, USA, 111-120.

[38] Hendrik Post and Carsten Sinz. 2008. Configuration Lifting: Verification Meets
Software Configuration. In Proceedings of the 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering (ASE "08). IEEE Computer Society,
Washington, DC, USA, 347-350.

[39] Frank Puhlmann, Arnd Schnieders, Jens Weiland, and Mathias Weske. 2005.

Variability Mechanisms for Process Models.

Han Albrecht Schmid. 1997. Systematic Framework Design by Generalization.

Commun. ACM 40, 10 (Oct. 1997), 48-51.

[41] Julio Sincero, Horst Schirmeier, Wolfgang SchrAtider-Preikschat, and Olaf
Spinczyk. 2007. Is The Linux Kernel a Software Product Line?. In Proceedings of the
International Workshop on Open Source Software and Product Lines (SPLC-OSSPL
2007).

[42] Stephane S. Some and Timothy C. Lethbridge. 1998. Parsing minimization when
extracting information from code in the presence of conditional compilation. In
Program Comprehension, 1998. IWPC °98. Proceedings., 6th International Workshop
on. 118-125.

[43] Reinhard Tartler, Daniel Lohmann, Christian Dietrich, Christoph Egger, and Julio
Sincero. 2011. Configuration Coverage in the Analysis of Large-scale System
Software. In Proceedings of the 6th Workshop on Programming Languages and
Operating Systems (PLOS ’11). ACM, New York, NY, USA, Article 2, 5 pages.
https://doi.org/10.1145/2039239.2039242

[44] Thomas Thiim, Sven Apel, Christian Késtner, Ina Schaefer, and Gunter Saake.
2014. A classification and survey of analysis strategies for software product lines.
ACM Computing Surveys (CSUR) 47, 1 (2014), 6.

[30

(31

[32

[35

[40

