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ABSTRACT
Developers rely on third-party library Application Programming
Interfaces (APIs) when developing software. However, libraries typ-
ically come with assumptions and API usage constraints, whose
violation results in API misuse. API misuses may result in crashes or
incorrect behavior. Even though API misuse is a well-studied area,
a recent study of API misuse of deep learning libraries showed that
the nature of these misuses and their symptoms are different from
misuses of traditional libraries, and as a result highlighted potential
shortcomings of current misuse detection tools. We speculate that
these observations may not be limited to deep learning API misuses
but may stem from the data-centric nature of these APIs. Data-
centric libraries often deal with diverse data structures, intricate
processing workflows, and a multitude of parameters, which can
make them inherently more challenging to use correctly. Therefore,
understanding the potential misuses of these libraries is important
to avoid unexpected application behavior. To this end, this paper
contributes an empirical study of API misuses of five data-centric
libraries that cover areas such as data processing, numerical com-
putation, machine learning, and visualization. We identify misuses
of these libraries by analyzing data from both Stack Overflow and
GitHub. Our results show that many of the characteristics of API
misuses observed for deep learning libraries extend to misuses of
the data-centric library APIs we study. We also find that develop-
ers tend to misuse APIs from data-centric libraries, regardless of
whether the API directive appears in the documentation. Overall,
our work exposes the challenges of API misuse in data-centric li-
braries, rather than only focusing on deep learning libraries. Our
collected misuses and their characterization lay groundwork for
future research to help reduce misuses of these libraries.

CCS CONCEPTS
• Software and its engineering→Maintaining software.
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1 INTRODUCTION
When developing software applications, developers typically use
third-party libraries that offer access to various functionality through
a set of Application Programming Interfaces (APIs). While some APIs
are easy to use and integrate, others have certain usage constraints
that application developers need to follow in order to correctly
achieve the desired functionality. Violating these constraints leads
to incorrect API usage, also referred to as an API misuse [3, 48, 59].
API misuses can lead to program crashes, security vulnerabilities,
performance problems, or unexpected program behavior [48].

There is a long line of research studying API misuses [2, 21,
22, 36, 45, 54, 56, 58, 59], most of which focused on Java APIs and
typically considered misuses related to the control flow and data
flow between APIs [2, 48]. For example, a common API misuse
is missing null checks or forgetting certain API calls (e.g., not
calling close() after calling open() on a stream).

In recent work, Wei et al. [57] investigated API misuses of two
Python deep learning libraries, TensorFlow and PyTorch. They
found that many of the misuses are caused by incorrect device
usage (e.g., CPU instead of GPU) or under-the-hood data conversion
problems. They conclude that misuses like data shape mismatch
in deep learning libraries are unique, because they are harder to
detect, and also because they may not immediately raise errors but
instead produce incorrect results or lead to performance problems.
However, we observe that apart from CPU/GPU misuses, many of
their observed misuses may not be specific to deep learning per se
but may rather stem from the reliance on data. We also observe that
there are many other libraries that focus on processing, analyzing,
and deriving insights from data. For example, data processing and
manipulation libraries such as pandas [40] or visualization libraries
such as seaborn [52] all deal with diverse data structures, intricate
processing workflows, and a multitude of parameters, which can
make them inherently more challenging to use correctly. We use
the term data-centric libraries to refer to such libraries. Given their
shared focus on handling data, it is reasonable to speculate that
some of the new types of API misuses observed for deep learning
libraries may also manifest in other data-centric libraries.

Consider the following deep learning API misuse example pro-
vided byWei et al. [57]: a developer intends to multiply two tensors,
𝐴 and 𝐵, where 𝐴 is a 3 × 3 tensor and 𝐵 is a 2 × 3 tensor. Since
the dimensions are not compatible for multiplication, the developer
needs to first transform tensor 𝐵. In TensorFlow, when transform-
ing a 2 × 3 tensor to a 3 × 2 tensor, the developer has two options:
reshape or transpose. While both methods produce tensors
with similar shapes, transpose is the correct API to call in this
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1 impor t pandas as pd
2 impor t m a t p l o t l i b . p y p l o t as p l t
3 impor t s eabo rn as sn s
4
5 # df data f rame has format :
6 # x_va lue s y_va lue s c o l o r
7 # 0 0.200000 0.333333 2 .0
8 # 1 0.003334 0.234043 1 .0
9 # . . . . . . . .
10 # 7 0.003334 0.234043 1 .0
11
12 d f = . . .
13
14 #v i o l e t #green #orange
15 c o l o r s = [ '#747FE3 ' , '#8EE35D ' , '#E37346 ' ]
16 − sn s . s e t _ p a l e t t e ( c o l o r s )
17
18 − sn s . s c a t t e r p l o t ( data = df , x="x_va lue s " , y="y_va lue s " , hue=" c o l o r " , s =40,

l e g e n d=F a l s e )
19 + sns . s c a t t e r p l o t ( data = df , x="x_va lue s " , y="y_va lue s " , hue=" c o l o r " , s =40,

l e g e n d=Fa l s e , p a l e t t e=c o l o r s )
20 p l t . show ( )

(a) Seaborn API misuse of set_palette and scatterplot

(b) Incorrect hue colors (c) Correct hue colors

Figure 1: Example of seaborn API misuse and its impact,
based on Stack Overflow question 67637829.

scenario, because with transpose, the dimensions are appro-
priately matched ([3 × 3] × [3 × 2] → [3 × 2]) and elements are
correctly positioned. While using reshape may not immediately
appear incorrect since it returns expected dimensions, using this
API leads to incorrect output as the elements of 𝐵 are rearranged
improperly. Importantly, this misuse does not trigger an error but
rather yields an incorrect output. Any subsequent operations using
the resulting tensors are also compromised.

Now, let us consider the scenario shown in Figure 1a where a
developer uses the Python visualization library seaborn to create
a scatterplot. In this example, the developer wants to color points
on the scatterplot differently according to the value in the column
color of their data frame, which is why they set hue="color"
on Line 18. The variable colors on Line 15 contains the specific
colors they want to use. Seaborn offers different options to set
color palettes such as calling the set_palette(...)method or
passing a value to the palette parameter in the scatterplot
API (e.g., scatterplot(..., palette=...)). On Line 16,
they use set_palette to assign these colors as the palette to
use. However, the displayed scatter plot in Figure 1b colors the
points using a different palette than the one specified; the correctly
colored scatterplot is shown in Figure 1c. It turns out that the use
of the specified color palette depends on the type of data in the
column used as the hue. In cases of numerical values, seaborn
defaults to an internal color palette, completely ignoring whatever
value was set using set_palette. Had the type of the color
column been categorical (i.e., strings) such as “zero”, “one”, “two”,
the same code would have correctly used the specified colors. The
only way to get the desired behavior with a numerical column
is to pass palette=colors as an argument to scatterplot

on Line 19 instead of calling set_palette on Line 16. Thus,
the data inside the data frame affects the correctness of the API
usage, highlighting the importance of understanding how data
types influence the behavior of the library.

These examples demonstrate that some of the challenges and
unique nature of API misuses found for the two deep learning li-
braries Tensorflow and PyTorch [5, 23, 57] may extend to other com-
monly used Python libraries, specifically those with a data-centric
nature. In general, misuses caused by data conversion errors are
not necessarily limited to deep learning or even machine learning
libraries. Our goal in this work is to more broadly investigate API
misuses of data-centric libraries.

Specifically, this paper presents an empirical study of API misuse
in data-centric libraries. We focus on Python, the most popular
language for data-driven applications [6, 16]. Since deep learning
libraries have been already studied [57], we selected five additional
widely-used data-centric Python libraries: NumPy [37], pandas [40],
scikit-learn [49], Matplotlib [27], and seaborn [52].

To identify misuses, we manually analyze 345 Stack Overflow
posts and 358 commits from open-source GitHub repositories that
use these libraries. Using information from these two different
data sources allows us to discover both API misuses that make
their way to developer’s committed code, as well as those where
developers seek community help before finalizing their code. We
then categorize the identified misuses in terms of the misuse type,
exhibited symptom, and root cause usingWei et al.’s taxonomy [57],
which is derived from the study of misuses of deep learning libraries.
We additionally investigate whether the library documentation
includes any explicit guidelines for avoiding the identified misuses.

Overall, we collect 49 API misuses, covering 45 distinct APIs. Our
findings reveal that despite differences in programming paradigms
between deep learning and traditional machine learning [57] or
visualization libraries, the nature of misuses previously observed
extend beyond the deep learning libraries. Specifically, we find that
39% of the misuses are due to data-conversion errors and the most
misused element is API parameters (51%). However, we find the
need to extend the existing taxonomy with an additional dimension
of data dependency to capture the idea that the exact same API
usage may be a misuse in one case while a correct usage in another,
only depending on the data being processed. The example discussed
in Figure 1a is an example of a data-dependent misuse. We find
that 55% of the studied misuses are data dependent and 35% of
misuses result in incorrect output without any explicit run-time
errors, while 41% cause program crashes. Overall, we find that
the common characteristic between all these libraries that leads to
the API misuses is their heavy reliance on data. Surprisingly, we
find that 39% of the misuses have documented API directives, but
developers still misused the API.

Our findings have implications for language and API design, mis-
use detectors, and surfacing information buried in documentation.
Specifically, data-centric libraries need to make assumptions about
data content and format and yet there are no built-in language
mechanisms for helping API designers enforce these assumptions.
Even when they document these assumptions, client developers end
up misusing them, further implying that we need more research
on surfacing important information in documentation.
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In summary, this paper makes the following contributions:
• We define the notion of data-centric libraries, and show that API
misuses of those libraries share characteristics with previously
identified API misuses of deep learning libraries.

• We collect 49 API misuses from 5 Python libraries, corresponding
to misuses of 45 distinct APIs.

• We categorize the detectedmisuses using an existing deep-learning
misuse taxonomy, finding that it is expressive enough to catego-
rize the majority of the data-centric misuses. However, we had
to introduce the notion of data dependency to the taxonomy to
capture some of our observations.

• We identify if the misused APIs have corresponding guidelines
in the library documentation.

• For eachmisuse, we construct a reproducible example to illustrate
the misuse.

• We discuss the implications of our findings on API and language
design, surfacing information buried in documentation, and de-
signing misuse detectors.
Our data is available on our online artifact page [4].

2 BACKGROUND, SCOPE, AND DEFINITIONS
2.1 Definitions and Scope
Schlichtig et al. [48] noted some discrepancies in how researchers
define API misuse. For example, some authors consider only the
external API of a library [3, 20], while others consider also internally
defined APIs that are meant to be used only inside the current
application [11]. Similarly, some work considers client code that
uses an outdated API due to breaking changes in the library as
a misuse [11, 48, 57], while other work considers general Python
typing issues as misuses [11]. In this work, we are interested in
API misuses of third-party libraries that stem from the unique
nature of the data-centric domain, rather than the nature of the
underlying programming language or general software evolution
characteristics. To clearly define our scope, we use the following
definitions from Schlichtig et al. [48], with some adaptations, if
needed, shown in non-italic square parentheses.

Definition I. An Application Programming Interface (API) is
the “public interface [that] exposes software elements (e.g., classes and
methods) to the outside world, making the implemented functionality
accessible [48].” We focus only on the use of third-party library APIs
in client code, considering all public API elements such as classes,
methods (including their parameters), and attributes.

Definition II. “An API directive is a natural-language statement
related to guidelines or constraints that describes how to use an API
correctly and optimally [, regardless of the developer’s task or inten-
tion]. It can be part of the underlying documentation of an API. How-
ever, an API directive can also be implicit, for example, because of in-
complete documentation or expected domain-specific knowledge [48].”

Definition III. “An API usage constraint is an API directive that
restricts the actual use of an API. These restrictions are not enforced by
the programming language itself, such as correct typing [, nor are they
part of the natural software evolution process (e.g., deprecation)].
Because API usage constraints are API directives, they are imposed by
the API designer/expert [48].”

For example, the scatterplot documentation contains this
API directive, related to the misuse in Figure 1: “The default treat-
ment of the hue (and to a lesser extent, size) semantic, if present,
depends on whether the variable is inferred to represent “numeric”
or “categorical” data. In particular, numeric variables are represented
with a sequential colormap by default, [...] This behavior can be
controlled through various parameters, as described [...] below. [51]”.

Definition IV. “An API misuse is the violation of one or more API
usage constraints. Such violation leads to misbehaviour of the API,
e.g. errors, crashes, [incorrect output,] or vulnerabilities [48].”

Note that the API misuse definition depends on the definition
of an API usage constraint. The distinction in Definition IV is im-
portant for our work, since we do not want to consider errors that
are inherent to programming in Python regardless of the library
being used. For example, if a developer passes a float argument to
an integer parameter, the Python type system will raise a run-time
TypeError integer argument expected, got float. We do not consider
this as an API misuse since it is a typical programming error that
stems from the dynamic typing nature of Python rather than violat-
ing an API usage constraint. This is, for example, a key distinction
between our definition of API misuse (as well as Wei et al. [57]’s)
and that of He et al. [11]’s study of general Python API misuses.

Our explicit exclusion of deprecations from Definition IV is also
important. Deprecations and breaking changes are a general phe-
nomenon for all dependencies/libraries, regardless or the program-
ming language or nature of these libraries, and there are typically
warnings in place for such deprecations. Thus, we do not consider
modifications to an API usage that occur due to compliance with
future library changes, as such adaptations are inevitable with
the evolution of libraries. While Wei et al.’s study [57] considered
deprecation management errors as misuses, accounting for approx-
imately 20% of the collected misuses, deprecations are not specific
to deep learning libraries in any way. Our focus is on identifying
misuses in the domain of data-centric libraries, while deprecations
would be observed for any library from any domain.

Note the slight variation we added in Definition III of API di-
rective, w.r.t. the developer’s intention. For example, a developer
accidentally passing “write” as the open mode of a file instead of
“append” is not a misuse since both these modes are correct and
depend on what the developer wants to do. We cannot assume the
developer’s intention of whether they want to write or append to
the file. A misuse should always be a misuse, without requiring ex-
tra information about the developer’s intention. In contrast, setting
the axis color of a plot without enabling the axis first is a misuse
since any code that sets the axis color without enabling the axis is
problematic (the axis color would not have any effect).

Finally, we note one interesting distinction by Schlichtig et
al. [48] in the following definition:

Definition V. “A domain-specific API offers functionality tailored
to a specific domain. Its domain determines the achievable goal and
application rules of a domain-specific API. In contrast, non-specific
APIs are not tailored to a domain, nor do they determine a specific
goal associated with their use [48].”

Schlichtig et al. [48] argued that this distinction is important
because domain-specific APIs sometimes have additional or very
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specific types of usage constraints, as exhibited by API misuse in the
cryptography domain for example [17, 34]. Data-centric libraries
offer domain-specific APIs, and previous studies of deep learning
libraries already showed that characteristics such as accounting for
data shape in these libraries caused new types of misuses, posing
challenges to traditional misuse detection tools. Both of these facts
motivate the study in this paper, where we extend the scope be-
yond only deep learning libraries to understand API misuses in the
general domain of data-centric libraries.
2.2 API Misuse of Deep Learning Libraries
Our study is motivated by the findings of Wei et al. [57] who
examined API misuse of Python deep learning libraries, partic-
ularly TensorFlow and PyTorch. To identify misuses, they mined
the change history of various client repositories of these two li-
braries and manually analyzed candidate commits that have made
changes to the libraries’ API usages. Based on the identified mis-
uses, they create a taxonomy of API misuse types, root causes, and
impact. While this taxonomy amalgamates information from exist-
ing work [3, 11, 20, 48], the authors add new root causes that stem
from the nature of deep learning libraries, specifically data con-
version problems and device management errors. Figure 2 shows
the summary of their developed taxonomy, which we leverage for
labeling the misuses we discover in our work. The taxonomy first
categorizes the types of misuses by the program element involved
in the misuse as well as the type of the violation (e.g., misuse in
Figure 1 would be a missing API parameter). API method refers to
misuses related to calling functions or methods. API parameter are
the parameters of the API methods. API condition refers to condi-
tional statements required for the API usage. The taxonomy also
categorizes the root cause of the problem. Devise management er-
rors relate to any hardware or resource utilization (e.g., using CPU
vs GPU). Algorithm errors are related to mathematical problems
(e.g., dividing by zero) or incorrect calculations. Data conversion
errors represent issues that relate to incorrect conversions between
data types or shapes. When a program accesses a null object, null
reference errors occur. Deprecation management errors relate to
the usage of deprecated APIs or parameters. Finally, the taxonomy
categorizes the observed symptom, which in our example would
be unexpected output. Program crashes and warnings refer to run-
time errors and warnings. Low efficiency refers to slow program
execution.

Note that the figure shows some of our modifications to the
taxonomy in terms of adding items (in red, discussed later in our
results), or not considering items due to our goal and defined scope
above. For the latter, we do not consider the greyed out outdated
violation and root cause of deprecation management errors.
3 METHODS
We conduct an empirical study to identify API misuses in data-
centric libraries. Most previous research on API misuse identified
misuses from either Stack Overflow or git history on GitHub [13, 15,
60]. In our work, we use both data sources to collect API misuses.
We manually analyze Stack Overflow questions and their answers
to determine if they are discussing a problem related to API misuse.
We also investigate commits from Python projects on GitHub, as
they may contain fixes for API misuses. For confirmed misuses from
either data source, we note how the misuse happened (e.g., passing

Type

Symptom

API Misuse

API Method API Condition

API Parameter

Element

Program Crash Unexpected Output

Warning Low Efficiency

Root Cause
Data Conversion Error Device Management Error  

Deprecation Management Error Null Reference Error Algorithm Error  

Missing

Outdated

Redundant

Violation

Replacement

Ordering

Data dependent? → yes/no

Configuration Error  

Figure 2: Our updated misuse classification taxonomy, based
onWei et al. [57]’s analysis of deep learning misuses. Greyed
out boxes are out-of-scope items we do not consider, while
red boxes show our additions.

incorrect argument type) and what was the observed symptom (e.g.,
incorrect output) by reproducing the misuse. We then use Wei et
al. [57]’s misuse classification of deep learning API misuses to cate-
gorize the misuse types, their root causes, and symptoms. As a new
contribution of our work, we consult the library’s documentation
to determine if there is a documented API directive related to the
misuse.
3.1 Data Collection
3.1.1 Libraries. We select five popular data-centric Python libraries
[44]: NumPy [37], pandas [40], scikit-learn [49], Matplotlib [27],
and seaborn [52]. NumPy is a fundamental package for scientific
computing with Python, providing support for large, multidimen-
sional arrays and matrices, along with a collection of mathematical
functions to operate on these arrays. Pandas is a fast, powerful, flex-
ible, and easy-to-use data analysis and data manipulation library.
Scikit-learn is a popular library for data preprocessing, machine
learning, and visualization. Matplotlib and seaborn are comprehen-
sive libraries for creating interactive visualizations in Python. We
consider both Matplotlib and seaborn as they are both commonly
used together for visualizations.
3.1.2 Selecting questions in Stack Overflow. Stack Overflow [39] is
a widely used question and answer website that is popular among
developers and programming enthusiasts. When posting questions,
users are encouraged to provide minimal reproducible code exam-
ples, stack trace of errors if any, and problem descriptions. Stack
Overflow has tags that represent various technologies, which can
highlight the libraries discussed in questions. We utilize these char-
acteristics in Stack Overflow questions to identify questions that
potentially relate to API misuses.

Since Stack Overflow has tags to represent various libraries, we
retrieve Stack Overflow posts taggedwith each of our libraries using
the Stack Exchange data explorer [38]. To increase our chances
of finding questions related to API misuse, we use the following
additional filtering criteria. We remove questions with no answers
since answers are essential to help us determine the root cause
behind the posed problem. We filter out questions whose title starts
with “how to” since these relate to the poster asking about how
to implement particular functionality, which is unlikely to relate
to API misuse. We also filter out questions with negative scores,
because a negative score indicates poorly articulated questions or
those missing information [35]. Additionally, we only collect the
questions that were posted between 2019 and 2023 in order to avoid
analyzing outdated questions. Finally, we filter out questions with
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Table 1: Number of collected and filtered Stack Overflow
questions for each library, collected on 31-05-2023.

Tag Total # of # of questions Minimum Annotated
questions after filtering sample size sample size

pandas 106,331 95,992 69 69
NumPy 30,698 27,774 68 69
scikit-learn 7,132 6121 68 69
Matplotlib 16,916 15,463 68 69
seaborn 3,251 2,942 67 69

Total 164,328 148,116 340 345

no code snippet in the question body, as we need to analyze a code
snippet to determine whether it contains an API misuse.

Table 1 shows the total number of questions in Stack Overflow
tagged with each library and the number of questions that we
collect after applying the above filtering criteria. Since manually
analyzing close to 164,000 posts is infeasible, we resort to analyzing
a sample of these threads. We find that the question scores exhibit a
right-skewed distributionwhere themajority of the questions either
have a score of zero, one, or two while only a few questions have
a score higher than two. Accordingly, we partition the questions
into three groups based on score: zero, one or two, and three or
higher and then we randomly select questions from each group to
annotate (i.e., we perform stratified sampling according to question
score). We choose 90% confidence level and 10% error margin when
selecting samples from each question group (i.e. tag). The resulting
sample sizes varied between 67-69 per tag, which provided us with
a target of 340 questions to be analyzed. For the sake of dividing
questions equally among three annotators, we analyze 345 Stack
Overflow questions in total.
3.1.3 Selecting commits in GitHub projects. Our goal is to find
Python projects that use our libraries of interest and analyze their
commit history to identify potential fixes of API misuses of these
libraries. For each analyzed library, we use the GitHub dependency
graph of the library’s public repository to find client projects. Af-
ter collecting all dependents of the five libraries, we remove the
duplicates as some of the dependent projects use more than one
library (e.g., pandas and NumPy). After removing duplicates, we
find 869,544 projects that use at least one of the five libraries. We
collect the metadata of all these dependent repositories; specifically,
stargazer count, number of contributors, programming language,
visibility (public or private), archived or not, fork or not, project
creation date, and the last committed date. From the collected meta-
data, we remove projects whose main programming language is not
Python. We filter out projects that are either private or archived.
We also filter out forks. After removing repositories using the above
filters, we sort the remaining repositories in descending order based
on stargazer count, number of contributors, and the project’s age.
We calculate the age by subtracting the created date from the last
committed date.We then select the top 100 projects from this ranked
list to analyze their commits. From the selected 100 repositories, we
select candidate commits that may contain API misuses for manual
evaluation. Specifically, a commit that contains changes to an API
usage of one the five libraries could potentially be a fix for a misuse.

To find candidate commits, we use PyDriller [42] to first detect
the modified Python files in each commit along with the modified
line numbers. We ignore changed files with less than 10 changed

Table 2: Number of candidate commits for each library.

Library # of all # of diverse # of reviewed # of unique # of reviewed
commits commits commits APIs APIs

pandas 390 185 50 (27%) 92 37 (40%)
NumPy 2273 431 103 (24%) 184 74 (40%)
scikit-learn 545 528 143 (11%) 210 84 (40%)
Matplotlib 234 146 57 (39%) 80 42 (53%)
seaborn 5 5 5 (100%) 8 8 (100%)

Total 3447 1,295 358 (28%) 574 245 (43%)

lines, as previous studies observed that fixing API misuses typically
involved small number of edits [3, 57]. We also filter out commits
that are likely fixing a typo than changing the API usage by using
a regular expression to determine if the commit message is a one-
liner, and the message contains “fix” or “correct” with “typo”. For
the remaining commits, we parse the changed Python files to find if
any of the modified lines contain API usages of the target libraries.

Overall, we find 3,447 candidate commits originating from 76
of the analyzed projects. Table 2 shows the number of candidate
commits per library. In these commits, we find that APIs such
as numpy.array or pandas.DataFrame were modified over
hundred timeswhile APIs such asseaborn.heatmap ormatpl-
otlib.Axes3D were modified less than ten times. Additionally,
many APIs were modified only once. To prioritize the discovery of
unique API misuses, we focus on selecting commits that modify
different APIs. For APIs that appear in less than three candidate
commits, we include all related commits for those changes. How-
ever, if an API appears in more than three candidate commits, we
randomly select three commits from different projects. From the
3,447 candidate commits, we first select commits that modify unique
APIs, resulting in identifying 1,295 diverse commits (Table 2 column
3). These commits contain 574 unique APIs that were modified. We
manually analyze 358 randomly selected diverse commits (Table
2 column 4) to identify API misuses, satisfying a 95% confidence
interval and 5% error margin.
3.2 Data Analysis
We rely on manually analyzing a given candidate Stack Overflow
post or GitHub commit to determine if it contains an API misuse.
We create a coding guideline to streamline this process. In the
subsections below, we first describe how we iteratively developed
our coding guideline using Stack Overflow data and then describe
the developed criteria. Finally, we discuss our closed coding process
for labeling the identified misuses.
3.2.1 Developing a coding guideline: Stack Overflow threads typi-
cally have a wealth of information, including problem descriptions,
code examples, stack traces, comments, and answers. Thus, we use
the process of analyzing Stack Overflow posts to iteratively develop
and refine our coding guide for confirming API misuse.

Specifically, we first conduct the manual annotation process of
Stack Overflow posts iteratively using three authors of this paper.
We start with an initial coding guide on how to identify API mis-
uses. After each iteration, annotators discuss any disagreements
that occur in that round. If a resolution surfaces any new infor-
mation that has not been included in the initial coding guide, we
improve the coding guideline to be more explicit. In each round
of the first five rounds, we select six Stack Overflow questions for
each library, totaling 30 questions per round. After each round,
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we calculate the agreement score for determining a misuse using
Fleiss kappa score [8]. In the first three rounds, we reach moder-
ate agreement (>0.5) [18]. In round four, our agreement was fair
(0.37) [18]. After revising the coding guide, in the fifth round, we
received an almost perfect agreement score (0.85) [18] which indi-
cates that the annotators achieved a solid understanding on how to
identify and distinguish API misuses and that the instructions in
the code guide are stable. After the fifth round, the same three au-
thors continue analyzing the remaining threads but with only two
annotators per thread. Overall, we maintain a moderate agreement
(>0.5), measured through a pair-wise kappa score [18], during the
last round of annotation. Each pair of annotators resolved their
disagreements, sometimes involving the third annotator if needed.
Given the stability of the coding guideline at this point, we proceed
to assign only one annotator per selected GitHub commit. We then
perform an additional verification step where we create a minimal
reproducible example for each identified misuse to confirm that our
understanding of the misuse is correct.

3.2.2 Coding guideline & coding process. Our exact coding guide-
line is part of our artifact. When analyzing a Stack Overflow thread,
we make use of the question title, description, provided code snip-
pets, as well as the answers in the thread. We discard Stack Over-
flow posts that mainly seek help with implementing a particular
functionality (e.g., best way to plot two graphs on the same axis)
or understanding code/concepts (e.g., why does a specific function
use a particular approximation method). On the other hand, when
analyzing GitHub commits, we make use of the commit message to
understand the purpose of the change, as well as reading through
the modified code lines. In some commits where a bug issue or
pull request is linked in the commit message, we also read through
the conversation there to get more context about the fix. We now
describe some of the important criteria for determining a misuse.

If the problem is related to the user’s intention (e.g., they want
the legend on the right not the left), we do not consider this as a
misuse (Definition IV). Additionally, if the fix is related to managing
API deprecation, we do not consider this as a misuse (Definition III).
To differentiate API misuses from normal Python (type) errors, we
do not consider problems that are caught by the Python type system
as a misuse (e.g., passing float instead of integer).

Once we determine that a thread/commit contains a misuse, we
determine the root cause of the problem and record its description as
free text characteristics. We use these noted characteristics to later
categorize our collected misuses using Wei et al. [57]’s taxonomy.

We also record the symptom that was reported to be observed.
Finally, we refer to the library documentation to identify whether
the API usage constraint that was violated is documented in the
API. If the API directive is documented, we record the directive
along with a link to the source.

3.2.3 Categorizing API misuses. We use closed coding [7] to label
the confirmed misuses according to Wei et al. [57]’s taxonomy
described in Section 2.2. Specifically, we use our recorded notes to
determine each misuse’s type (program element and violation), root
cause, and symptom. We allow extensions to the taxonomy if we
find any misuses that do not fit into one of the existing categories.

Table 3: Statistics of identified misuses.

Library
Data Source

Total
SO GH

pandas 4 1 5 (10%)
NumPy 2 11 13 (27%)
scikit-learn 7 6 13 (27%)
Matplotlib 7 3 10 (20%)
seaborn 8 0 8 (16%)

Total 28 21 49 (100%)

4 CHARACTERISTICS OF API MISUSES IN
DATA-CENTRIC LIBRARIES

We find that approximately 8% of the Stack Overflow posts and 5%
of the GitHub commits we analyzed contain API misuses. In total,
we identify 49 misuses, with 28 identified from Stack Overflow and
21 from GitHub. Our data set contains misuses of 45 unique APIs.
Table 3 provides a summary of the number of misuses, and their
distribution across the five libraries. We now describe the details of
the misuses we found, using the taxonomy in Figure 2.
4.1 API misuse types
The red boxes in Figure 2 show the additions we made to the tax-
onomy. Specifically, we find misuses that occur due to violating
the expected order of execution, which we add. We also observe
that some misuses are identified by problems in the data being
processed. For example, the misuse in Figure 1 is data dependent,
because if the column ‘color’ passed to hue has categorical data,
the API works correctly. Therefore, we extend the taxonomy to
include data dependency as a dimension for describing misuse type.

We now discuss the types of API misuses we observe based
on this updated taxonomy. Table 4 shows the distribution of mis-
use types in our data set compared to the deep learning misuse
statistics [57], which are shaded gray. Since we do not consider
deprecations as misuses in our study, the outdated column in Table
4 is empty for our data. The table also shows how many of the
misuses are data dependent, for each misuse type. Overall, out of
the 49 misuses, 27 (55%) are data dependent.

Wei et al. [57] found that 51% of the deep learning misuses
involved API methods, 35% involved API parameters, while 13% in-
volved API conditions. In our study, 43% of the misuses involve API
methods, 51% involve API parameters, while 6% involve API condi-
tions. The higher percentage of API parameter misuses in our study
can be attributed to the diverse range of data types accepted by the
libraries we analyzed, coupled with the specific constraints imposed
on the data within a given context. For example, Matplotlib’s text
method accepts any data type for the x and y parameters, but the
data type must match the previously set axes type. We now discuss
the overall API misuse types we observe in terms of combination
of program element and violation type.
Missing API Method: In general, missing an API call is one of the
most commonly discussed type of API misuse in the literature [3, 11,
20, 48]. We observe that nine (18%) misuses of our studied libraries
result from developers missing necessary calls to an API.

When examining misuses in deep learning applications, Wei et
al. [57] found that failing to call APIs such as flatten causes
shape mismatch errors. While shape mismatch errors are unique
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Table 4: API misuse types of the data-centric libraries we
study compared to deep learning libraries [57], shown in
gray.

Missing Redundant Replacement Ordering Outdated Total

API method
This study

Total 9 (18%) 6 (12%) 4(8%) 2 (4%) - 21 (43%)

DD 4 (15%) 5 (19%) 1 (4%) 1 (4%) - 11 (42%)

DL only [57] 113 (13%) 138 (15%) 130 (15%) - 74 (8%) 455 (51%)

API parameter
This study

Total 9 (18%) 1(2%) 15 (31%) - - 25 (51%)

DD 5 (19%) - 10 (37%) - - 15 (56%)

DL only [57] 88 (10%) 56 (6%) 60 (7%) - 115 (13%) 319 (36%)

API condition
This study

Total 3 (6%) - - - - 3 (6%)

DD 1 (4%) - - - - 1 (4%)

DL only [57] 43 (5%) 29 (3%) 17 (2%) - 28 (3%) 117 (13%)

DD=data dependent, DL=deep learning

1 impor t s eabo rn as sn s
2
3 t i p s = sns . l o a d _ d a t a s e t ( ' t i p s ' )
4 − g = sns . F a c e t G r i d ( data=t i p s , c o l =' t ime ' , row=' s ex ' )
5 − g . map( sn s . lmp lot , ' t o t a l _ b i l l ' , ' t i p ' )
6 + sns . l m p l o t ( data=t i p s , x=' t o t a l _ b i l l ' , y=' t i p ' , c o l =' t ime ' , row=' s ex ' )

Figure 3: Redundant API call to seaborn’s FacetGrid when
using lmplot

type of API misuse in deep learning libraries, as they are heavily
reliant on tensor computations, we also observe similar misuses
in our data set. For example, in pandas, failing to call pivot on a
pandas dataframe before passing it toheatmap results in a runtime
error, because the input is not in wide format as heatmap expects.
It is important to note that this misuse is data dependent and only
occurs when the data is in long format.
Redundant API Method: An API call is redundant if it is an
API that the developer should not call in the given context and
calling it would lead to an unexpected outcome or has no effect.
Figure 3 shows an example of a redundant call to FacetGrid.
Since lmplot internally uses FacetGrid, users could simply
use lmplot (Line 6) without passing it to FacetGrid (Line 4, 5).
In this case, the extra call is not harmless, using the combination
shown in Figure 3 Line 4, 5 actually causes a run-time error. Notably,
out of the six misuses in this category, five are data dependent.
API Method Replacement: We find four misuses (8%) where the
developer used an incorrect API; only one of them are data depen-
dent. For example, when using scikit-learn’s StandardScaler,
calling transform before it trains on a sample of data is incorrect.
The correct method to call is fit_transform [50].
API Method Ordering: Some libraries expect APIs to be called
in a specific order. For example, seaborn expects developers to set
the axis tick labels before applying any formatting to the labels.
Otherwise, the formatting is simply not applied. We find two mis-
uses (4%) that belong to this category, with only one of them being
data dependent. While Wei et al. [57] did not observe violation type
related to call order, the FUM taxonomy [48] uses the label “Method
call sequence” to signify misuses in this category.
Missing API Parameter: The second most common type of misuse
is missing API parameter, representing 18% of our misuses. APIs
can specify the parameters they accept, which can be required
or optional, as well as keyword based or position based. When
a developer does not pass a required parameter, Python would
complain and issue a run-time error. Recall that we do not consider
such cases since they are general Python programming errors that
the interpreter can easily detect. However, there are cases where

1 impor t s eabo rn as sn s
2
3 data = sns . l o a d _ d a t a s e t ( ' t i p s ' )
4 − sn s . d i s t p l o t ( data . t i p , norm_hist=F a l s e )
5 + sns . d i s t p l o t ( data . t i p , norm_hist=Fa l s e , kde=F a l s e )

Figure 4: Missing API parameter for seaborn’s distplot.

other code context implies the necessity of setting a particular
parameter (or its value). This is what this API misuse type refers to.

When creating tensors in TensorFlow, the parameter dtype is
optional. If a subsequent API requires a specific data type for the
input tensor, failing to set dtype appropriately can lead to unex-
pected results and propagate errors throughout the program [57].
We observe a similar case in pandas where replace(...) [41]
accepts either True or False for the parameter inplace. The de-
fault value of inplace is False, which means that replace
would return a new data frame with the replaced values. Accord-
ingly, a misuse occurs if the code does not have an assignment
operation like new_df = df.replace(...) and the devel-
oper continues to use the old df, incorrectly assuming it has the
replaced values. We also observe a case where the missing API
parameter depends on another related parameter. For example, in
Figure 4, the developer tries to set norm_hist=False (Line 4)
without setting kde=False. Line 5 shows the correct setting of
these related parameters. Without that, the y-axis show density
instead of counts. We find that 19% of the data-dependent misuses
are missing API parameter misuses, making it the second highest
category in misuses that are data dependent.
API Parameter Replacement:We find that API parameter replace-
ment is the most common type of misuse in our data (31%). This
occurs when a method-call parameter is used incorrectly where
a different value should be passed. Examples of incorrect usage
includes passing incorrect data formats or unsupported values.

For instance, inMatplotlib’sdatestr2num(...) [26]method,
the expected input date format is month-first (e.g., 04-21-2021). Pro-
viding a day-first format results in incorrect output due to improper
conversion. Another example is when invokingset_style(...)
[53] from seaborn to modify the aesthetics of a graph, developers
can specify a set of key-value pairs (as a Python dictionary) from
a predefined list of supported pairs. If an unsupported value is
passed, seaborn silently ignores it, resulting in no change to the
graph’s appearance. As a last example, according to Matplotlib’s
documentation, calling pyplot.text(x, y, s) [28] to add
a text label to a graph requires that the values of parameters x
and y match the types of the corresponding axes (which would be
determined from previous API calls while setting up the graph).
A run-time error occurs when the argument type does not align
with the axes type. Wei et al. [57] also observed API parameter
replacement in deep learning APIs, where developers explicitly set
the dtype parameter to float32 to reduce computational costs.

We note that only 7% of the deep learning API misuses are API
parameter replacements [57], versus 31% in our data. We believe
that the reason for this difference is that deep learning libraries
have a more restricted set of data types and values that can be
passed to their APIs, while the libraries we studied (e.g., Matplotlib
and seaborn) have a wider range of data types and values that can
be passed to their APIs. We also note that 37% of API misuses that
are data dependent belong to this misuse category.
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Summary:API parameter replacement is the most commonmisuse
type in our data, followed by missing API parameter. Misuses in
these two categories account for 49% of the total misuses. Overall,
we observe all API misuse types found in deep learning libraries,
and also discover the new dimension of data-dependent misuses.

4.2 API Misuse Root Causes
We find that we could describe most of the root causes of our
misuses using the existing taxonomy. However, we also observe
the need for a new category of root causes, namely configuration
errors, to allow us to capture 12 of our observed misuses. Table 5
shows the distribution of root causes of data-centric API misuses
compared to deep learning API misuses.
Data conversion errors: Data conversion errors are the number
one root cause of misuses of our data set (39%), while they were
the second highest for deep learning misuses since they were pre-
ceded by device management errors. As an example, when utilizing
visualization APIs such as seaborn’s lineplot, providing col-
umn vectors for both the x and y parameters leads to a runtime
error, as the API expects a 1D array. In another case, scikit-learn’s
OneHotEncoder requires the input dataframe column to be of
uniform data type; otherwise, it cannot internally convert the data.
Null reference errors: Similar to findings of Wei et al. [57] (4%),
we also observe a small percentage (10%) of null reference errors.
Algorithm errors:We observe a higher proportion (20%) of misuses
whose root cause is algorithm errors. In the deep learning data set,
the majority of misuses in this category were attributed to division
by zero, often due to developers neglecting to pass a parameter (a
small floating-point value) to mitigate such numerical errors [57].
In our data set, the algorithm problems varied. For example, scikit-
learn’s roc_curve API being incorrectly applied to multi-class
classification, resulting in inaccurate results, even though the API
is designed for binary classification.
Device management errors: In deep learning libraries, device man-
agement errors are the highest root cause, with the vast majority be-
ing specific to CPU vs. GPU usage. We observe only one device man-
agement error where a developer forgot to call pyplot.close()
when plotting figures in a loop. We, expectedly, do not observe
CPU/GPU usage related device management errors.
Configuration errors: There were many misuses whose root cause
did not fit within the existing taxonomy. Accordingly, we derive
this new category that refers to misuses resulting from incorrect
or missing internally expected configuration settings within an
API. For example, seaborn’s countplot does not set the satura-
tion values to the provided input values unless the saturation
argument is set to 1; otherwise, an incorrect internal library/API
configuration setting would be used. We find that approximately
24% of the misuses, mostly visualization API misuses, are due to
such internally expected configurations.
Other:We find two misuses (4%) that did not clearly fall into any of
the root cause categories. One is the misuse in Figure 3, where call-
ing FacetGrid is redundant and problematic, because lmplot
internally calls FacetGrid.

Table 5: Distribution of root causes of data-centric API mis-
uses and deep learning API misuses [57].

Category # (%) data-centric # (%) deep learning [57]

Data conversion error 19 (39%) 246 (28%)
Algorithm error 10 (20%) 88 (10%)
Null reference error 5 (10%) 33 (4%)
Device management error 1 (2%) 337 (38%)
Configuration error 12 (24%) -
Other errors 2 (4%) 10 (1%)

Summary:We find that data conversion errors in the additional
data-centric libraries we study are even more prominent than deep
learning libraries, while device management errors are naturally
less. We also find a new category of root causes, configuration
errors, encompassing 24% of the observed misuses.

4.3 API Misuse Symptoms
Program crashes: Similar to Wei et al. (36%) [57], we also find that
program crashes is the most frequent misuse symptom (41%).
Unexpected output: Despite our smaller dataset, we observe a
higher proportion of misuses that result in unexpected output (35%)
compared to the 24% of API misuses found byWei et al. [57]. Specifi-
cally, we find that 17misuses did not result in any runtime errors but
instead silently produced incorrect or unexpected outputs which
could propagate through the program without a notice.

Out of the 17 misuses with unexpected output that we observe,
11 are related to APIs from the two visualization libraries while
the remaining 6 instances are from scikit-learn and pandas. Fig-
ure 1b is an example of incorrect output resulting from misusing
visualization library APIs. We also observe cases where misusing
the visualization library’s APIs resulted in incorrect axis tick labels,
incorrect axis scales (count vs. normalized values), and incorrect
plot styles such as not displaying an axis grid. The incorrect outputs
caused by misusing APIs from non-visualization libraries varied.
For example, when calling replace() on pandas dataframe, the
API returns a dataframe with replaced values. Failing to assign the
return dataframe produces incorrect output (that is harder to spot
than an incorrect visualization for example), because the developers
continue to process the dataframe with initial values.
Low efficiency: Only 20% of the misuses we observed result in low
efficiency issues related to performance or memory usage. In con-
trast, Wei et al.’s findings [57] indicate that 32% of misuses in deep
learning APIs lead to poor performance. We note that in their data,
device management errors accounted for the majority of misuse
root causes (38%), which explains why they find a higher proportion
of misuses that result in low efficiency since configuring the correct
device (i.e., CPU vs GPU) could result in faster training, considering
the high computation cost of deep learning models. In our studied
libraries, the low efficiency symptoms are related to the misuse of
APIs that are computationally expensive, when specific configu-
rations are not set. For example, when calling intersect1d in
NumPy, the parameter assume_unique should bet set to True
if the input arrays are unique, speeding up calculation.
Return warning: Only two misuses in our dataset resulted in
warnings. One pandas misuse is due to chain indexing, while one
Matplotlib misuse is caused by calling the legend function when
there was no legend to display. We note that Wei et al. [57] observe
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much more warnings, because most of their observed warnings
were deprecation warnings, which we do not consider.
Summary: Program crashes are the most prevalent symptom in
data-centric libraries. However, we observe that our libraries ex-
hibit a higher proportion of misuses that result in incorrect output.

4.4 Documented API Directives
We find that 39% of the misuses have documentation that explicitly
states the correct usage of the API. Among the libraries that we
analyzed, scikit-learn has the highest percentage of misuses with
explicit API directives. We also analyze the relationship between
misuse symptoms and the presence of explicit API directives. Only
20% of misuses resulting in low efficiency are accompanied by
documented directives. In contrast, at least half of the misuses that
result in unexpected output orwarnings have explicitly documented
API directives. These findings indicate that developers misuse data-
centric APIs despite explicitly documented directives.
5 DISCUSSION
The goal of this empirical study is to understand whether the new
types of API misuses, root causes, and symptoms found for deep
learning libraries are specific to the deep learning domain or may
extend to other libraries. Specifically, we investigated misuses of
Python data processing, machine learning, and visualization APIs
and categorized them using an existing deep learning misuse tax-
onomy [57]. We find that the misuses of these libraries exhibit
similar behavior with those of deep learning libraries, with the
heavy reliance on data being the common characteristic leading to
many of the misuses. Furthermore, the multitude of parameters in
data-centric APIs, which accept various data types and formats, con-
tribute significantly to the occurrence of misuses. Our findings have
implications for language and API design, surfacing information
buried in documentation, and designing misuse detectors.
Implications for language support and API design:We find that
55% of the misuses in our data set are data dependent. Furthermore,
56% of these data-dependent misuses are due to violating various
parameter/argument directives. For example, seaborn’s heatmap
method expects the input data in wide-format. Internally, the API
checks if the input is a pandas dataframe or a rectangular array
which then can be converted to a pandas dataframe. For this type
checking, seaborn uses Python function isinstance(). Other
than that, the API has no further verification to check if the input
is in the correct format. Python does not provide any tools that
can help library designers enforce such restrictions. Newer Python
versions (after 3.5) did introduce type hints with the typing module,
which can then be used for static type checking by external tools
such as mypy [33]). However, type checking alone cannot infer the
content of various data structures. While third-party library APIs
typically include checks for data format (e.g., pandas dataframe
or NumPy array), ensuring the integrity of data content, such as
detecting mixed data types within a column of a pandas dataframe,
poses a challenge in API design. Programming languages like Java
have annotation frameworks (e.g., Java Checker Framework or In-
telliJ IDEA’s Java Annotations) that enforce API contracts such
as parameters not being null, being within a certain range, or in
a specific format like an email; however, there is limited support
for inter-parameter dependencies, especially if it is dependent on

data. Overall, our findings imply that programming language de-
signers need to provide tools that can be used to enforce necessary
restrictions when designing data-centric third-party APIs.
Implications for API documentation: Approximately half of
the misused APIs did not have documented API directives, which
could potentially have led to their misuse. For example, Matplotlib’s
datestr2num(...) expects the input string to be in the date-
first format (e.g., 04-21-2021) even though the documentation does
not explicitly state this. The documentation, however, notes that
Matplotlib uses the dateutil library to parse a string to date. Un-
less developers investigate the documentation of dateutil, it is
not possible to know the assumptions made by API designers of
datestr2num(...).

While missing documentation or hard-to-navigate documenta-
tion is not specific to data-centric libraries per se [25, 30, 47], we
speculate that the specialized domain knowledge of using these
libraries might make it more problematic as evidenced by the high
misuse rate of documented API directives in our data set. Thus,
we encourage data-centric library authors to explicitly document
all API directives, especially those related to expected data for-
mats and not to assume any domain knowledge on behalf of the
users. Researchers may also help by enhancing previously proposed
techniques for identifying and surfacing critical information in doc-
umentation [47], or even augmenting documentation to include
missing information [55]. Our data set of API misuses along with
any documented API directives can provide a starting point for
further pursuing this research direction.
Implications for misuse detectors: Wei et al. [57] showed that
existing misuse detectors are not effective in detecting deep learn-
ing API misuses. Our study shows that the characteristics of deep
learning API misuses extend to data-centric APIs, and that parame-
ter misuse and furthermore data-dependent misuses are even more
prevalent in these libraries. To detect data-centric API misuses, tool
developers need to not only consider dynamic analysis but to de-
velop techniques that relate the format/content of data to the API
calls and parameter values in the code. We note that tools such as
Data Linter [14] provides summary statistics of data and trigger no-
tifications for incorrectly inferred types in data (e.g., string instead
of numeric). While Data Linter allows developers to preprocess a
data set before they feed to a program, any modifications or data
manipulation that happens during the program execution is out of
its scope. Our detailed analysis of the misuses we found and the
data set we provide can help tool developers build more advanced
misuse detectors.
6 THREATS TO VALIDITY
Internal validity: Internal validity threats relate to the degree to
which the study’s outcomes are attributed to the methodology, min-
imizing personal bias. We followed a manual labeling approach, and
any manual analysis is prone to subjectivity. To reduce subjectivity,
we iteratively developed a stable coding guideline by having three
annotators annotate each thread in ∼43% of our Stack Overflow
thread sample. Once we stabilized the coding guideline, we contin-
ued with one annotator per data point for the GitHub commits. To
further reduce subjectivity, we created minimal reproducible ex-
amples for each misuse and conservatively eliminated any misuses
that we could not reproduce.
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Construct validity: Construct validity threats relate to the ex-
tent to which our study reflects the concept of API misuse within
the defined scope. Approximately 8% of the both Stack Overflow
threads and the GitHub commits that we analyzed contained API
misuses. While this ratio matches previous misuse studies [1, 11],
we note that Wei et al. [57] found misuses in a larger portion of
their analyzed commits (21%). One notable differences is that the
libraries that we study do not rely on hardware devices, a charac-
teristic common in deep learning libraries. Additionally, we do not
consider deprecation handling as API misuse. These two categories
account for approximately 58% of the misuses found in Wei et al.’s
data [57]. We note that we did find 48 commits that fix deprecated
API usage that we did not account as misuses, which would have
largely increased our data set size. Overall, our smaller total num-
ber of misuses is likely due to our stricter API misuse definition
discussed in Section 2, but which is more aligned with our goal of
observing misuses within the domain of data-centric libraries.
External validity: External validity threats relate to the generaliz-
ability of our results. We selected 5 popular Python libraries to study
the misuse types in data-centric applications. We did not study all
data-centric libraries in Python or those in other programming lan-
guages. Thus, our results may not generalize beyond the selected
libraries. However, our selection represents more domain diversity
than the typical deep learning focus [15, 57, 60] and extends even
beyond machine learning in general. We encourage researchers
to further study more data-centric libraries. We also prioritized
finding commits for diverse APIs, which may mean that we missed
observing more instances of the same or similar misuses.

7 RELATEDWORK
Types of API Misuse: Amann et al. [1] created a data set of Java
API misuses known as MuBench. In followup work, the authors
used this data to create a taxonomy for classifying Java API misuses
(MuC) [3]. By analyzing API documentation of JDK, JFace, and Java
Commons Collection, Monperrus et al. [30] developed a taxonomy
of types of API directives. Schlichtig et al. [48]’s API directive defi-
nition that we use in Section 2 is inspired from Monperrus et al.’s
work. Schlichtig et al. [48]’s framework for classifying API mis-
uses is probably the most comprehensive API misuse classification
taxonomy/framework, mainly derived from the Java literature.

He et al. [11] created a taxonomy (PUM) for Python misuses,
comparing it to MuC and FUM above. Their work provides valuable
insights of the impact of the dynamic features of Python on using
APIs. The deep learning API misuse taxonomy by Wei et al. [57]
is based on these previous API misuse taxonomies while extended
to account for unique characteristics of the deep learning domain
[3, 11, 20, 48]. In our study, we utilize the deep learning taxonomy
to categorize misuses of data-centric API in general, with certain
modifications made to the categories to enhance expressiveness.
API directives: A library’s documentation contains information
on how to use an API. While some of the information is obvious
and thus has a little value [25], some information is critical for the
correct program behavior such as call order and condition check-
ing [45]. Due to the large amount of textual details, developers
could fail to notice important information when learning a new
API [25]. To alleviate this problem, Robillard and Chhetri proposed
a technique to automatically identify important knowledge items

in documentation by analyzing linguistic patterns in sentences [47].
Monperrus et al. [30]’s taxonomy of Java API directives is based on
analyzing documentation. We do not systematically analyze docu-
mentation, but we look for documented API directives specifically
related to the misuses we observed. Our results showed that the
majority of the misused APIs (39%) have documented directives,
emphasizing the need for additional support for highlighting and
surfacing this information to developers.
API misuse detection: There is a long line of research that aims
to detect API misuses. Early API misuse detectors mined frequent
usage patterns from source code to identify correct usages; devi-
ations from those mined patterns are then considered violations
[2, 21, 24, 31, 36, 43, 56]. Pattern-based techniques suffer from low
precision and low recall, because these tools are limited to detecting
only the frequently occurring usages. To remedy this, researchers
developed detectors to include correct usages automatically cap-
tured from documentation and client projects [22, 45, 59]. Addition-
ally, some detectors use domain specific language (DSL) to detect
API misuses where usage constraints are manually specified by an
expert or automatically extracted from documentation [9, 10, 17, 19].
There is also recent work that demonstrates the possibility of using
large language models (LLMs) for misuse detection [57]. In this
paper, our goal is not to design a misuse detector but to understand
the nature of API misuses of data-centric libraries, paving the way
for future research to use our findings to design and develop detec-
tion tools. For example, we find that 55% of misuses in our data set
are data dependent, suggesting that tool builders need to account
for the data driven nature of certain libraries when designing API
misuse detectors for these libraries.
Reasons for misusing APIs: There is also a line of work that
aims to understand the difficulties developers face when using
APIs [12, 29, 34, 46] as well as general API usability problems [32].
While we do not investigate why developers misuse APIs of data-
centric libraries, our results (e.g., undocumented API directives)
suggest potential API usability issues.
8 CONCLUSION
The idea for this empirical study started with our conjecture that
many of the recently observed API misuses of deep learning li-
braries are not necessarily specific to machine learning or deep
learning per se but are actually due to the data-centric nature of
these libraries. accordingly, we study API misuse in five additional
data-centric libraries and indeed find similar API misuse character-
istics. We find that more than half of the misuses (55%) are data-
dependent and that API parameter misuse is even more prevalent
than deep learning libraries. While run-time errors are the most
observed symptom, incorrect output comes as a close second. Data-
conversion errors emerge as the primary root cause of the misuses
we observed. Surprisingly, even when APIs were accompanied by
explicit API directives, developers still encountered difficulties, sug-
gesting challenges in extracting relevant information from textual
documentation. Reflecting on our findings, we discuss implications
for language and API design, misuse detectors, and surfacing buried
information in documentation. Our in-depth analysis of data-centric
API misuses, along with the data we share containing the misuses
and their (documented) API directives, paves the way for building
better support tools and misuse detectors.
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