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Abstract—With the rise of distributed software development,
branching has become a popular approach that facilitates col-
laboration between software developers. One of the biggest
challenges that developers face when using multiple development
branches is dealing with merge conflicts. Conflicts occur when
inconsistent changes happen to the code. Resolving these conflicts
can be a cumbersome task as it requires prior knowledge
about the changes in each of the development branches. A type
of change that could potentially lead to complex conflicts is
code refactoring. Previous studies have proposed techniques for
facilitating conflict resolution in the presence of refactorings.
However, the magnitude of the impact that refactorings have
on merge conflicts has never been empirically evaluated. In this
paper, we perform an empirical study on almost 3,000 well-
engineered open-source Java software repositories and investigate
the relation between merge conflicts and 15 popular refactoring
types. Our results show that refactoring operations are involved
in 22% of merge conflicts, which is remarkable taking into
account that we investigated a relatively small subset of all pos-
sible refactoring types. Furthermore, certain refactoring types,
such as EXTRACT METHOD, tend to be more problematic for
merge conflicts. Our results also suggest that conflicts that involve
refactored code are usually more complex, compared to conflicts
with no refactoring changes.

Index Terms—refactoring, git, merge conflict, software evolu-
tion

I. INTRODUCTION

Version control systems (VCSs), which keep track of the
software development history, have become an essential com-
ponent of modern software development. With the increase of
distributed software development [1], additional coordination
tools and processes to facilitate collaboration between team
members who may be working on different tasks have been
introduced. For example, large software systems commonly
make use of branching in distributed version control sys-
tems. Developers typically follow a branch-based development
approach, where new features or bug fixes are developed
in separate branches before being integrated into the master
branch, or another stable branch [2].

While branching (or forking where the developer may make
a tracked copy of the work in a separate repository [3])
has several advantages such as allowing better separation of
concerns and enabling parallel development [4], it still comes
at the cost of integration challenges [5]. Once a developer has
completed the intended work in a given branch, they need
to merge their changes with the rest of the team’s work. At

this point, merge conflicts may arise, because of inconsistent
changes to the code. Previous studies have shown that up to
16% of merge scenarios lead to conflicts [6]. Developers have
to resolve such conflicts before proceeding, which wastes their
time and distracts them from their main tasks [7].

There are several types of conflicts and various reasons why
a conflict can occur [7]. Textual conflicts are those that occur
when simultaneous changes occur to the same lines in a file,
and are the type of conflicts that popular VCSs such as GIT
detect. For example, one developer may have added a new
variable declaration foo at line 10 of a given file, while the
other developer has added another variable declaration bar
at the same line. When GIT tries to merge both changes, it
cannot decide which variable declaration should appear at that
line.

Another example of why a conflict can occur is shown
in Figure 1. Here, Alice moves function foo() from
Foo.java to FooHelper.java, while Bob adds the line
x += 2; to foo’s implementation in its original place
in Foo.java. The figure shows the resulting conflict in
Foo.java, when Bob tries to merge his code with Alice.
As shown, the resulting conflict in Foo.java shows that
the whole function is deleted in one branch, but modified
in the other; the number of conflicting lines reported is also
large (the size of the whole function foo). Given that Bob
is not aware that he needs to look at FooHelper.java to
understand what happened, he would mistakenly think that
this is a complex conflict that would take him lots of time
to understand and resolve. In reality, the conflict is actually
simple: Alice moved the function (a refactoring operation)
while Bob added an extra piece of code to it. A simple
resolution would be to add the extra piece of code to the new
location of the function.

The above example demonstrates how refactorings may
complicate the merging process. There have been a few studies
that investigated how to deal with refactorings during merging.
For example, Dig et al. [8] previously argued that since
refactorings cut across module boundaries and affect many
parts of the system, they make it harder for VCSs to merge
the changed code. They proposed refactoring-aware merging,
with the argument that if a merging tool understands the
refactorings that took place, it may be able to automatically
resolve the conflict and save the developer’s time. In the
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Merged Version 
Foo.java 

... 
++<<<<<<< refs/bob 
+ foo() { 
+  int x = getX(); 
+  x += 2; 
+  int y = getY(); 
+  calcDist(x, y); 
+ } 
++======= 
++>>>>>>> refs/alice
... 

Alice 
Foo.java

... 
 foo() { 
  int x = getX(); 
  int y = getY(); 
  calcDist(x, y); 
 } 
... 

Alice 
FooHelper.java

... 
+ foo() { 
+  int x = getX();
+  int y = getY();
+  calcDist(x, y);
+ } 
... 

Bob 
Foo.java 

... 
 foo() { 
  int x = getX();
+ x += 2; 
  int y = getY();
  calcDist(x, y);
 } 
... 

Fig. 1. A sample merge conflict caused by a refactoring operation

example above, their proposed approach would “unapply” the
refactoring (i.e., keep foo in its old place), apply the new
changes to it (i.e., add the new code), and then as a last
step, re-apply the refactoring. In a previous study [9], we
proposed similar strategies for various types of refactorings
we found while studying the simultaneous evolution of several
versions of the Android operating system, but we did not
develop corresponding tools. Other researchers focused on
improving code matching and resolution precision in software
merging by considering specific types of refactorings, such as
renamings [10], [11].

While the above studies propose techniques to deal with
refactorings during merging, there have not been any large-
scale empirical studies investigating the relationship between
refactorings and merge conflicts in the first place. Researchers
agree that refactorings may potentially complicate a merge
scenario. However, how often does this occur in practice?
Do refactorings actually result in more complex conflicts?
For example, Dig et al.’s refactoring-aware merging [8] was
never evaluated on a large scale. Their technique cannot handle
common refactorings such as EXTRACT METHOD. This is
because contrary to refactorings such as RENAME METHOD,
EXTRACT METHOD refactorings touch method bodies as well
as signatures, hence making it difficult to “unapply” them. If,
for example, EXTRACT METHOD refactorings are often in-
volved in merge conflicts, then more effort should be invested
into improving and extending such refactoring-aware tools.

Understanding the relationship between refactoring and
merge conflicts on a large-scale is important to drive re-

searchers’ efforts in the right direction. This paper presents
the first large-scale empirical study on the relationship between
refactorings and merge conflicts. As opposed to related work
that looked at a small number of repositories [8], [9] or at a
couple of refactoring operations [10], [11], our study analyzes
close to 3,000 GitHub repositories and uses the state-of-the-
art refactoring detection tool, RefactoringMiner [12], which
is able to precisely detect 15 types of refactorings. In order
to understand the relationship between refactoring and merge
conflicts, we break down our investigation into the following
research questions.

RQ1 How often do merge conflicts involve refactored code?
Understanding the extent of the impact that refactorings
have on merge conflicts would determine the practicality
of tools and techniques that assist developers in resolving
conflicts that involve refactorings.

RQ2 Are conflicts that involve refactoring more difficult to
resolve? In order to understand how problematic refactor-
ings are, knowing how often they are involved in conflicts
is not enough per se. A comparison between conflicts that
involve refactorings and those that do not will help us
better understand differences in complexity.

RQ3 What types of refactoring are more commonly involved
in conflicts? Refactoring-aware merging techniques that
rely on “unapplying” refactoring operations would be
rendered inefficient if refactoring types that cannot be
easily “unapplied”, such as all the extract operations,
happen to be involved in conflicts frequently.

We find that 22% of merge conflicts involve refactoring,
which is remarkable taking into account that we investigated
only 15 refactoring types while refactoring books describe
more than 70 different types [13]. This shows that refactoring
changes end up being involved in a considerable portion of
merge conflicts, and suggests useful potential for refactoring-
aware merging techniques.

Furthermore, we find that conflicts that involve refactorings
are more complex than conflicts with no refactoring. This
reaffirms the necessity of tools and techniques that can assist
developers in the merging process in the presence of refactor-
ings.

Our results also show that when adjusted for their overall
frequency, refactoring types affect conflicts at different rates.
EXTRACT METHOD refactorings are involved in more con-
flicts than their typical overall frequency, while the majority of
refactoring types are involved in conflicts less frequently. This
is bad news for current refactoring-aware merging techniques
and calls for more sophisticated approaches.

In summary, the contributions of this paper are as follows:

• An extensive empirical study on almost 3,000 open-
source Java repositories to investigate the role of refac-
toring operations in merge conflicts.

• A methodology for detecting refactorings in evolutionary
changes that lead to merge conflicts.

• Open-source implementation of our methodology, to fa-
cilitate verification and replication efforts.
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II. BACKGROUND

In this section, we describe how merging works in GIT, as
well as the related terms we use throughout the paper. We also
provide related background about refactoring and the refactor-
ing detection tool we use in this work, RefactoringMiner [12].

A. Software Merging

Using multiple branches in a source control system is
a common practice in software development that serves a
variety of purposes [4], [14]. At one point, developers need
to integrate the changes from the different branches, and this
is done by merging the corresponding branches. We call such
situation a merge scenario.

1) Merging in Git: Almost all merge tools that are currently
available, including the one utilized by GIT, employ three-way
merging techniques [7]. In three-way merging, two versions of
a software artifact are merged by making use of an additional
third version, which is often called the base version.

Figure 2 illustrates a typical merge scenario. When merging
two branches, GIT attempts to merge the most recent commit
in each branch. We call these commits merge parents. As a
base version in a merge scenario, GIT uses the most recent
commit that both merge parents can be derived from, referred
to as the common ancestor. The result of the merge is stored
in a merge commit. A merge commit can be identified from
the GIT history, since it has two or more parents (namely P1
and P2 in the example of Figure 2), unlike typical commits
that have one parent.

2) Merge Conflict: Based on the nature of the merge
scenario, a textual three-way merge tool, such as the one
used by GIT, might not be able to automatically merge the
two versions of a file. For a given conflicting merge scenario,
GIT can report conflicts across multiple files. GIT categorizes
conflicts into 6 types:

• add/add: When both merge parents add a new file with
same name, but with different contents.

• content: When both parents apply different changes to
the same file, in the same location.

• modify/delete: When P1 modifies a file, while P2
deletes it.

• rename/add: When P1 renames a file, and P2 adds a
new file with the same name.

• rename/delete: When P1 renames a file, and P2
deletes it.

• rename/rename: When both parents rename a file to
different names.

The first two types are at the content level, while the other four
are at the file level. Content level conflicts could be caused by
more than one location in the conflicting file. GIT reports these
conflicting locations by annotating them with <<<, ===, and
>>> markers as shown in Figure 1. We call each of these
annotated locations a conflicting region.

B. Refactoring

Fowler et al. [13] define refactoring as “a change made to
the internal structure of software to make it easier to under-

master

feature A 

P1
feature A1

P2
feature A2a 

feature A2

Common
Ancestor

Development Time

Merge 
Commit

Fig. 2. An overview of a merge scenario. Each labeled line represents a
branch, and the black-dotted commits constitute the merge scenario

stand and cheaper to modify without changing its observable
behavior”. Refactoring is used to enhance the software with
regards to reusability, modularity, extensibility, maintainability,
etc. [15]. It is also utilized in software reengineering [16],
which involves the examination and alteration of a subject
system to reconstitute it in a new form and the subsequent
implementation of the new form.

Tsantalis et al. [12] recently proposed a refactoring detection
tool, named RefactoringMiner, which we use in this work. It
detects a variety of refactoring types at multiple granularity
levels: Package, Type, Method, and Field. It has two modes
of operation: (1) comparing two given files or folders to detect
refactorings in them or (2) detecting refactorings in a given
GIT commit. We use the latter mode in our work. At the
time of running our study, RefactoringMiner could detect 15
refactoring types.

III. METHODOLOGY

As stated in Section I, our goal is to determine whether
refactoring changes are involved in conflicts that occur in Java
files. Investigating the relationship between refactorings and
conflicts on the commit level or file level may be misleading,
since the presence of a refactoring may not be related to
the resulting conflict in that commit or file. Therefore, in
our work, we investigate the relationship between refactorings
and merge conflicts on the conflicting region level, because
it provides more accurate results than other coarse-grained
analysis approaches. The remainder of this section explains
this approach in detail.

A. Overview

Figure 3 shows an overview of the steps we follow in our
methodology for analyzing a given repository. After identify-
ing merge scenarios with conflicting Java files, we detect all
conflicting regions for each scenario. Since we are looking for
refactorings that were involved in a conflicting region, we first
find all commits after the common ancestor that touched that
region, for each merge parent. Next, we use RefactoringMiner
to detect all refactorings that happened in those commits.
Using the location information reported by RefactoringMiner
for refactoring operations and by GIT for conflicting regions,
we then determine whether a given refactoring was involved
in the historical evolution of the conflicting region. All the
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information we gather in this process is stored in a MYSQL
database. Our approach is implemented as a Java tool, which
is publicly available [17].

4. Detecting Involved Refactorings

3. Detecting Refactorings

2. Detecting Evolutionary Changes 

1. Detecting Conflicting Regions

Find Conflicting Regions Find Merge Commits 

@@65,1 +65,1@@
int a; 
+int a = 2; 

MC 

@@73,1 +73,2@@
+float f = .2; 
 int a; 

CA 

P1

P2 

Commit 1, Commit 2, ...

RefactoringMiner

Evolutionary Change 
for file1 in Commit 1

Method Rename 
Lines 90 to 98 on file1 
Lines 90 to 98 on file1

Refactoring 
in Commit 1

+

Evolutionary Change 
for file1 in Commit 2

Refactoring 
in Commit 2

+

@@@65,1 73,2 +78,5@@@
++<<<<<<< HEAD 
 +int a = 2; 
++======= 
+ float f = .2; 
+ int a; 
++>>>>>>> refs/branch 

@@65,1 +65,1@@
int a; 
+int a = 2; 

Push Down Attribute 
Lines 73 to 73 on file1 
Lines 46 to 48 on file2

@@@65,1 73,2 +78,5@@@
++<<<<<<< HEAD 
 +int a = 2; 
++======= 
+ float f = .2; 
+ int a; 
++>>>>>>> refs/branch 

@@73,1 +73,2@@
+float f = .2; 
 int a; 

Commit 2 

Commit 1 

Fig. 3. An overview of our methodology

B. Step 1: Detecting Conflicting Regions

We identify all merge scenarios by finding merge commits
in the GIT history. Merge commits are commits that have
multiple parents. In this work, we focus on merge commits
that have only two parents, and record them in our database.
We then replay the merge scenario as follows. We first detect
the merge parents for each merge commit from the GIT
history. We then checkout P1, and use the git merge
command (with default parameters) to merge P2 into it.

git checkout P1
git merge P2

By doing so, we can learn (i) whether a given merge
scenario is conflicting, as well as (ii) the conflict details, in
case it is a conflicting merge scenario. This step is essential
because the GIT history does not contain such information.

If a merge scenario is conflicting, the git merge
command will report the list of conflicting files, as well as
their conflict type (See Section II-A2). Using this list, we
record the conflicting Java files and their conflict type to the
database, if any. For Java files with content conflict type,
we detect all conflicting regions by using the git diff
command. When in a conflicting state, this command will
report all conflicting regions, along with the corresponding
location of each region in both merge parents. Because
this command reports a few lines before and after the
conflicting region, we use the -U0 parameter to remove
these extra lines. We record this information in the database.

git diff -U0

Step 1 in Figure 3 shows an example of the conflicting
region produced by running the above git diff command.
The three pairs of numbers between the @@@ symbols denote
the conflicting region. The first pair of numbers corresponds
to the region in P1, while the second pair corresponds to
P2. The third pair of numbers is the conflicting region in the
conflicting merged file with the markers. In each pair, the first
number is the line number where the region begins and the
number after comma is the length of that region. Because we
are interested in the location of the conflicting region in each
merge parent, we only record the first two pairs of numbers
for each conflicting region.

C. Step 2: Detecting Evolutionary Changes

In the next step of our methodology, we track the historical
evolution of a given conflicting region between the common
ancestor and each merge parent. Using this information, we
can determine if a refactoring was involved in any of these
evolutionary changes which later led to a conflict. We use
the git log command to perform this task. git log
is a useful and versatile command thanks to the different
parameters it accepts1. Using the -L parameter along with a
revision range, it will report all commits in the revision range
that have touched the given file in the specified location. For
a given conflicting region, we run git log once for each

1https://git-scm.com/docs/git-log

154

https://git-scm.com/docs/git-log


TABLE I
STORED CODE RANGES FOR EACH REFACTORING TYPE

Code Element Refactoring Type Stored Code Range Corresponding to
Old Commit New Commit

Package CHANGE PACKAGE type declarations in old package type declarations in new package

Type
EXTRACT SUPERCLASS/INTERFACE source type declaration(s) extracted type declaration
MOVE CLASS, RENAME CLASS refactored type declaration refactored type declaration

Method

EXTRACT METHOD, EXTRACT & MOVE METHOD source method declaration source and extracted method declarations
INLINE METHOD target and inlined method declarations target method declaration
PULL UP METHOD, PUSH DOWN METHOD,

refactored method declaration refactored method declaration
RENAME METHOD, MOVE METHOD

Field PULL UP FIELD, PUSH DOWN FIELD, MOVE FIELD refactored field declaration refactored field declaration

merge parent, with the -L parameter set to the corresponding
location of the conflicting region in that parent (extracted
in Step 1), and the revision range set between that merge
parent and the common ancestor. For example, the revision
range P2..P1 includes all commits that are reachable from
P1 and not reachable from P2, which is equivalent to the
commits between P1 and the common ancestor of P1 and P2.

git log -L startP1,endP1:file P2..P1
git log -L startP2,endP2:file P1..P2

This command outputs all commits that have touched the
specified location as well as the corresponding location infor-
mation for each commit. In our example in Figure 3 (Step
2), running the above commands returns the black-dotted
commits. We call these commits evolutionary commits since
they are involved in the evolution of the conflicting region. The
rectangles connected to these commits contain the reported
location information. The two number pairs between the @@
symbols correspond to the location of the conflicting region
before and after that commit, respectively. For the top commit,
for example, the conflicting region can be found at line number
65 before and after this commit. We save this information in
the database.

D. Step 3: Detecting Refactorings

In this step, we use RefactoringMiner2 to detect the refactor-
ing operations taking place in the commits that were involved
in the evolution of conflicting regions (i.e., in the evolutionary
commits identified in Step 2). In addition to the refactoring
type, RefactoringMiner reports the files and the exact code
ranges (with line numbers) that were touched by a refactoring
operation. We store at least two code ranges for a refactoring
change: one code range corresponds to the refactored code
element before refactoring, and the other corresponds to the
element after refactoring. Table I provides a summary of the
code ranges we store in the database for different refactoring
types.

E. Step 4: Detecting Involved Refactorings

In the final step of our methodology, we identify the
refactorings that have affected the evolution of conflicting

2https://github.com/tsantalis/RefactoringMiner, used as of commit
46c80ad

regions. In other words, we are trying to determine if an
evolutionary change that later lead to a conflict contains
a refactoring operation. Using the code range information
that we have for both refactorings (Step 3) and evolutionary
changes to conflicting regions (Step 2), we determine if there
is an overlap between them. We consider a refactoring and
evolutionary change as overlapping if they have at least one
line in common, either in their old-commit code ranges or
in their new-commit code ranges. We call such refactorings
that have overlapping code ranges with an evolutionary change
involved refactorings, since they are involved in the changes
that are related to the conflicting region. In the example of
Figure 3, Step 4 shows that the refactoring in commit #1
would not be considered as an involved refactoring, while the
refactoring in commit #2 would be considered so.

IV. EVALUATION SETUP

Repository Selection: The first step of our evaluation
setup is to determine the set of GIT repositories we will
run our analysis on. GitHub is a source-code hosting service
that contains over 85 million software repositories.3 Many
software engineering researchers use GitHub to obtain a set
of repositories and analyze them for their studies [18]–[24].
However, considering the public nature of GitHub, including
random repositories without employing a filtering process
could lead to misleading findings. For example, many students
use GitHub to upload the source code of their course works
and programming assignments. Ideally, we want the conclu-
sions of our study to be indicative of how refactorings affect
merge conflicts in realistic development setups.

Munaiah et al. [25] studied GitHub repositories and pro-
posed two classifiers (Score-based and Random Forest) that
determine whether a given repository is a well-engineered
software project. Based on their results, the Random Forest
classifier has a higher precision rate. Using their dataset of
1,857,423 repositories, we filter out projects that are not
labeled as well-engineered by the Random Forest classifier.
Additionally, given the focus of our work, we only consider
repositories that are implemented in Java. In our final filtering
step, to further ensure the quality of the repositories we pick,

3https://github.com/features
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we only include repositories with 100 or more stars on GitHub.
This leaves us with a dataset of 2,955 repositories, which we
use for our study. However, we find that 30 repositories from
this list are no longer accessible with the provided GitHub
URL, and so we exclude them from the analysis. Thus, we
run our methodology on the final list of 2,925 repositories.

RefactoringMiner settings: When using Refactoring-
Miner, we find that some commits may take longer to process,
sometimes leaving the process to hang. Given the scale of
our study, we need to ensure that the analysis terminates in a
timely manner. Accordingly, we enforce a timeout of 4 minutes
on RefactoringMiner. If RefactoringMiner does not terminate
within 4 minutes on a given commit, we terminate the process
and skip this commit.

Running environment: For running the analysis, we used
12 threads on a machine with 16 CPU cores at 3.4GHz, 128
gigabytes of memory, a solid-state storage device, and a 1
Gbps Internet connection. Each thread runs the entire process
for a repository. Analyzing all repositories took a total of 27
hours.

V. RESULTS

In this section, we report the results of running our method-
ology from Section III on the 2,925 repositories described
in Section IV. When running the analysis, we find that one
repository (platform frameworks base4) took a much longer
time to process, due to its unusually high number of merge
scenarios: this repository has 281,251 merge scenarios, while
all other projects in our dataset have 729,060 combined. We
decided to skip this repository in our analysis because this
uncommon irregularity might skew our results. Thus, all the
results provided in this section are based on the analysis of the
remaining 2,924 repositories. We first report some descriptive
statistics of the data collected, and then proceed to answer each
of the research questions we presented in the introduction.

A. Descriptive Statistics of Collected Data

Table II provides a summary of the collected data after
running our methodology on our set of 2,924 repositories,
including the mean and standard deviation for each metric. We
find that 2,606 of the repositories we analyzed contained merge
scenarios (a total of 729,060 merge scenarios), out of which
1,753 repositories had at least one conflicting merge scenario
(a total of 63,826 conflicting merge scenarios). Out of those,
1,424 repositories had at least one conflicting merge scenario
(CMS) that included a conflicting Java file (a total of 36,988
CMSs with conflicting Java files). Since not all conflict types
can have conflicting regions, a fewer number of repositories,
1,403, have conflicting regions (a total of 258,956 conflicting
regions). Furthermore, 1,396 of those repositories have his-
torical evolutionary changes for their conflicting regions, with
these changes occurring in a total of 657,726 commits. We
explain the discrepancy between the number of repositories
with conflicting regions and repositories with evolutionary

4https://github.com/android/platform frameworks base

TABLE II
STATISTICS FOR MERGE SCENARIOS, MERGE CONFLICTS, AND

REFACTORINGS

Total
# of Corresponding Per Repository

Repositories Mean SD

Merge Scenario 729,060 2,606 279.76 1,690.83

Conflicting Merge
63,826 1,753 36.40 144.36Scenario (CMS)

CMS with Java Conflicts 36,988 1,424 25.97 91.82

Conflicting Region 258,956 1,403 184.57 767.38

Evolutionary Commit 657,726 1,396 471.15 2,073.24

Refactoring in
248,652 1,136 218.88 783.61Evolutionary Commits

commits in Section VI-A. The results we present in the
rest of this section are thus based on the 1,396 repositories
for which we were able to extract historical evolutionary
changes for their conflicting regions. Note that the last row in
Table II shows the number of refactoring operations detected
by RefactoringMiner in evolutionary commits.

As an additional data point not shown in the table, the
36,988 conflicting merge scenarios with Java conflicts we
collected contain 157,422 conflicting Java files. The conflicts
in these Java files can belong to any of the conflict types
discussed in Section II-A2. Out of these, 99,846 files (i.e.,
63%) are content conflicts. This suggests that content
conflicts, which is the focus of our work, represent the majority
of conflicts that developers face in practice.

For measuring the effect size, we use r = Z/sqrt(N) where
Z is the test statistic and N is the number of samples [26].
We interpret r as small (≥ 0.1), medium (≥ 0.3), and large
(≥ 0.5) [26].

B. RQ1. How often do merge conflicts involve refactored
code?

1) Data used for RQ: We answer this question by check-
ing whether a code change that led to a conflict involved
a refactoring change. As explained in Section III, we use
the term involved refactoring to describe a refactoring that
happened in an evolutionary change and which overlaps with
the conflicting region. A conflicting merge scenario can have
multiple conflicting regions. If at least one of the conflicting
regions in a conflicting merge scenario contains involved
refactorings, we consider that merge scenario as one that
contains involved refactorings.

2) Findings: We find that there are 8,155 conflicting merge
scenarios that contain involved refactorings. We know from
Table II that there is a total of 36,988 merge scenarios with
conflicting Java files, which means that 22% of these merge
scenarios involve refactorings. On the conflicting region level,
we find that 28,670 (i.e., 11%) of the 258,956 conflicting
regions from Table II have involved refactorings.

Answer to RQ1: 22% of merge scenarios with at least one
conflicting Java file involve refactorings. More precisely, 11%
of conflicting regions have at least one involved refactoring.
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refactorings

3) Implications: Since there are no previous studies that
investigated the extent of refactorings in merge conflicts, or
other types of semantic code changes in merge conflicts, we
have no point of reference to compare our findings to. How-
ever, previous work by McKee et al. [27] showed that when
resolving merge conflicts, practitioners’ top needs include: (a)
understanding the code involved in the merge conflict, and
(b) tools to help them explore the project history during the
process of resolving conflicts. While 22% might not seem
like a high number, and we cannot conclude that refactorings
are involved in the majority of merge conflicts, our findings
provide good news for addressing practitioners’ requests from
McKee et al.’s study. Since refactoring detection in commit
history has now become precise and scalable, this means
that, based on our results, researchers can provide developers
with tools to explore the history and interpret changes in a
little less than a quarter of conflicting merge scenarios, thus
helping them to resolve conflicts faster. On the level of a given
conflicting scenario, such tool support can be provided for
approximately 11% of the conflicting regions. It should be
emphasized that in our study, we considered only a subset
of all possible refactoring types, because RefactoringMiner
supports only 15 out of the 72 refactoring types described
in Fowler’s catalog [13]. We conjecture that the aforemen-
tioned percentages would be potentially even larger if more
refactoring types were considered.

C. RQ2. Are conflicts that involve refactoring more difficult
to resolve?

1) Data used in RQ: Previous work on software merging
used the number of conflicting lines as a measure of the
complexity of a conflict [28], [29]. Recent work also confirms
that the number of conflicting lines is one of the top factors
that affects the developers’ perception of the difficulty of a
conflict [27]. Based on the above previous work, we use
the number of conflicting lines, in other words the size of
conflicting region, as a proxy for describing the difficulty
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Fig. 5. Number of evolutionary commits per merge scenario with and without
involved refactorings

of a merge conflict. As an additional measure of difficulty,
we also look at how refactorings can affect the number of
evolutionary commits for conflicting merge scenarios. Since
program comprehension is a traditionally complex and time
consuming task [30], we assume that the more evolutionary
changes a merge scenario has, the more complex resolving
a merge conflict will be, since more changes need to be
understood.

2) Findings: Figure 4 shows the size of all conflicting
regions in our study. The left box plot contains conflicting
regions with involved refactorings, while the right box plot
contains the remaining conflicting regions. The orange lines
mark the median and the green triangles show the mean. The
figure shows that there are a few conflicting regions without
refactorings that are larger than any conflicting region with
refactoring (those with >10,000 lines). However, this does not
hold on average. The mean and median for conflicting regions
with involved refactorings are 39.63 and 12 respectively.
The same values are lower for conflicting regions without
involved refactorings, with a mean and median of 26.63 and 7,
respectively. The unpaired Wilcoxon rank-sum test shows that
these distributions are statistically different (p-value = 0.00).
Additionally, a 95% confidence interval for the difference
between the two population medians is between 3 and infinity,
suggesting that the median of the size of conflicting regions
with involved refactorings is at least 3 lines larger than the
median size of the remaining conflicting regions. The effect
size is 0.14 which can be interpreted as small.

Figure 5 shows the distribution of the number of evolu-
tionary commits for each conflicting merge scenario. The left
box plot contains conflicting merge scenarios with at least
one involved refactoring change in their evolutionary commits.
The right box plot contains the remaining conflicting merge
scenarios. Similar to Figure 4, the orange line shows the
median and the green triangle marks the mean. As Figure 5
suggests, conflicting merge scenarios with involved refactor-
ings have a larger number of evolutionary commits (median:
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5%, mean: 10.43%) compared to conflicting merge scenarios
with no involved refactoring changes (median: 2%, mean:
3.46%). Furthermore, the Wilcoxon rank-sum test shows that
this difference is significant (p-value = 0.00). The effect size
is 0.34 which can be interpreted as medium.

Answer to RQ2: Conflicting regions that involve refactorings
tend to be larger (i.e., more complex) than those without
refactorings. Furthermore, conflicting merge scenarios with
involved refactorings include more evolutionary changes (i.e.,
changes leading to conflict) than conflicting merge scenarios
without involved refactorings.

3) Implications: Our findings show that conflicting regions
that involve refactoring operations are indeed more complex
than conflicting regions without involved refactorings. While
3 extra conflicting lines may not seem like a big difference,
recall that the median size of a conflicting region is already
small (7 lines), so 3 lines represents an almost 50% increase.
Additionally, our results suggest that resolving merge conflicts
with involved refactorings may be more difficult, since they
typically involve more evolutionary changes for the developer
doing the resolution to understand. Our findings provide great
motivation for refactoring-aware merging tools and techniques
that can help developers in the merging process.

D. RQ3. What types of refactoring are more commonly in-
volved in conflicts?

1) Data Used for RQ: We consider 15 types of refactorings
in our work. Not all of them necessarily occur with the
same rate, and each refactoring type might impact conflicting
regions differently. Understanding how often each refactoring
type affects merge conflicts is important for any future tool
support, especially for refactoring-aware merging tools and
techniques [8].

When looking for differences in the distribution of each
refactoring type among all involved refactorings, it is im-
portant to take into account the “typical” distribution of
refactorings types as well, i.e., how often each refactoring type
occurs in general. This way, we can observe if there are any
discrepancies between the distribution of a given refactoring
type among involved refactorings vs. in general. Specifically,
it would be interesting to find the refactoring types that
appear more often as involved refactorings when compared
to their general distribution. Such cases indicate particularly
problematic refactorings that are involved in merge conflicts.
However, in our methodology, we do not collect information
about all refactorings that happen in each repository. As de-
scribed in Section III-D, we detect refactoring operations only
in evolutionary commits. Since not all detected refactoring
operations are involved refactorings, we use the distribution
of all detected refactorings in all evolutionary commits as a
proxy for the general distribution of refactorings in our data.

2) Findings: Figure 6 shows how common each refactoring
type is across all projects. It provides two different distri-
butions for each refactoring type: involved refactorings and

TABLE III
WILCOXON SIGNED-RANK PAIRED TEST RESULTS BETWEEN OVERALL

AND INVOLVED REFACTORINGS. WHEN INVOLVED REFACTORINGS ARE
MORE THAN OVERALL REFACTORINGS, THE DIRECTION OF DIFFERENCE IS
↑, AND ↓ OTHERWISE. RESULTS WITH p < 0.05 ARE SHOWN IN BOLD,

WITH HIGHLIGHTED ROWS BEING SPECIFICALLY OF INTEREST.

Refactoring Type
Direction of

p-value
Effect Size

Difference (r = Z/sqrt(N))

CHANGE PACKAGE ↑ 0.093 0.035

EXTRACT & MOVE METHOD ↓ 0.187 0.028

EXTRACT INTERFACE ↑ 0.000 0.081
EXTRACT METHOD ↑ 0.000 0.119

EXTRACT SUPERCLASS ↑ 0.017 0.054
INLINE METHOD ↓ 0.304 0.022

MOVE & RENAME CLASS ↓ 0.000 0.209
MOVE ATTRIBUTE ↓ 0.000 0.210

MOVE CLASS ↓ 0.000 0.324
MOVE METHOD ↓ 0.000 0.182

PULL UP ATTRIBUTE ↓ 0.000 0.141
PULL UP METHOD ↓ 0.000 0.131

PUSH DOWN METHOD ↓ 0.000 0.086
RENAME CLASS ↓ 0.000 0.198

RENAME METHOD ↓ 0.000 0.233

overall refactorings. Every project has two data points in each
violin plot, representing a refactoring type. The y-axis is the
percentage of refactorings corresponding to the refactoring
type. The width of each plot at a given percentage shows
the number of projects with that percentage. For example,
suppose a project has a total of 5 refactorings in its evo-
lutionary commits, two RENAME METHOD refactorings and
three MOVE CLASS refactorings. Also, assume that the two
RENAME METHOD refactorings are involved in conflicting
regions. This project will be represented by 30 data points in
the figure, two points for each refactoring type. For the violin
plots corresponding to involved refactorings, all of the points
for this project will have a value of zero, except the point
corresponding to RENAME METHOD which will be 100%.
For the violin plots corresponding to overall refactorings, the
points for RENAME METHOD and MOVE CLASS will have a
value of 40% and 60%, respectively, and the points for the
remaining refactoring types will be zero.

We use a two-sided paired Wilcoxon signed-rank test to
compare the distributions of overall refactorings and involved
refactorings, for each refactoring type. We use a Benjamini
& Hochberg (BH) p-value adjustment measure to account for
multiple comparisons, and use α = 0.05. To find the direction
of the difference, we compare the means and interquartile
ranges of the distributions. We show the results in Table III.
The third column shows that 12 refactoring types have p-
values lower than 0.05 (highlighted in bold), meaning that
involved and overall refactorings in these types have a different
distribution.

Out of these 12 types, involved refactorings have higher per-
centages for EXTRACT INTERFACE, EXTRACT METHOD, and
EXTRACT SUPERCLASS. However, the effect size is negligible
for EXTRACT SUPERCLASS and EXTRACT INTERFACE and is
small for EXTRACT METHOD.
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Fig. 6. Percentage of each involved refactoring’s type per project

Answer to RQ3: EXTRACT METHOD is more involved in
conflicts than its typical overall frequency, with a small effect
size. EXTRACT INTERFACE and EXTRACT SUPERCLASS are
also more involved in conflicts, but with negligible effect
sizes.

3) Implications: Our results suggest bad news for existing
refactoring-aware merging tools. As mentioned in the introduc-
tion, Dig et al.’s undo/redo technique [8] cannot handle extract
refactorings. This calls for more sophisticated refactoring-
aware merging tools that can handle such cases.

With the exception of MOVE CLASS, the effect size of the
remaining refactorings in the other direction is small. The
larger effect size for MOVE CLASS might have to do with
the fact that GIT detects file move and rename operations.
Since a Java public class is represented in a single file, the
MOVE CLASS refactoring is essentially a file move operation
for public Java classes. Now, if a class is moved in one
branch, while its content was edited in another branch, GIT
can automatically merge the content change since it is aware
of the move.

VI. THREATS TO VALIDITY

A. Construct Validity

In Table II, the number of repositories with evolutionary
commits is less than the number of repositories with con-
flicting regions. Upon further investigation, we found that
about 4% (11,312 out of 258,956) of conflicting regions do
not have corresponding evolutionary commits. After manual
sampling, we found that this occurs for merge scenarios
that contain nested merge scenarios within their evolutionary
changes. Since we do not go back and examine the previous
histories of these nested merge commits, it means that for
some conflicting regions, we miss the changes that may have
caused the conflict, if those changes were caused by a merge
commit. However, since we analyze every merge scenario in
a repository, the inner merge scenarios will be individually

analyzed and we will collect their evolutionary commits and
corresponding refactorings. Any missed involved refactorings,
because of these nested merge cases simply means that our
reported stats are a lower bound of the actual involvement of
refactorings in merge conflicts.

When looking for merge commits, we only consider merge
commits with two parents, while in reality a merge commit
can have more than two parents. However, merge commits
with more than two parents happen rarely in practice.

In our methodology, we looked for refactoring operations
that were involved in evolutionary commits that led to con-
flicts. However, it is not easy to determine whether an involved
refactoring indeed caused a conflict, or even more so, whether
it was the sole cause of that conflict. This is because refac-
torings are usually interspersed with other type of changes
[31]. As a result, determining whether a conflict was caused
by a refactoring or other changes that were tangled with the
refactoring is a difficult task. This is why we conservatively
say that these refactorings were involved in conflicts and
refrain from claiming that they directly caused the conflicts.

In Section V-C, we consider the number of conflicting lines
as an indicator of resolution difficulty in a merge conflict.
While previous research suggests that practitioners do perceive
this as a difficulty [27], it is possible for some conflicts to not
follow this trend.
B. Internal Validity

Any inaccuracies in our tooling may lead to wrong results.
To mitigate that, we use the state-of-the-art refactoring tool,
RefactoringMiner, which has high precision. Additionally, we
manually reviewed samples of our results throughout our
experiments. In terms of our methodology for calculating
involved refactorings, we manually validated samples of our
results and also publish our tooling and findings in our online
artifact page [17] to facilitate reproducability.

As mentioned in Section IV, when using RefactoringMiner
to detect refactorings in a given commit, we employ a 4-minute
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timeout. We keep a record of every time RefactoringMiner
takes more than 4 minutes and the process is terminated. Out
of 115,911 commits that we analyzed with RefactoringMiner,
only 949 of them (0.81%) reached this timeout. This is a very
small percentage and does not pose a serious threat to the
validity of our results.

C. External Validity

Our study focuses only on Java projects. By limiting our
subject systems to well-engineered software projects, we made
our results more indicative of realistic development setups.
However, since we were limited to open-source software
systems and we did not have access to closed-source enterprise
Java projects, we cannot claim that our findings can be
generalized to all Java software systems. Nonetheless, the large
number of subject systems we use (almost 3,000) suggest that
our findings are common in open-source projects.

Finally, RefactoringMiner is able to detect only 15 refac-
toring types out of the 72 refactoring types described in
Fowler’s catalog [13]. However, the investigated refactoring
types are among the most frequently applied types [32]. We
conjecture that a study considering a larger set of refactoring
types would possibly find an even stronger involvement of
refactoring operations in merge conflicts.

VII. RELATED WORK

A. Software Merging

While branch-based development is a common practice
in software engineering, integration challenges for merging
separate branches remain a drawback. There are multiple
studies that propose new merging techniques to reduce the
manual integration labor as well as to decrease the likeli-
hood of merge conflicts. According to the seminal survey by
Mens [7], software merging tools can be categorized by how
they represent software artifacts.

Text-based merge tools are language-independent and con-
sider software artifacts as text-files [33], [34]. Because of their
line-based approach, these tools cannot handle simultaneous
changes to the same lines. The conflicts we study in this paper,
as reported by GIT, are based on text-based merge tools.

Syntactic merge tools are more advanced since they take
into account the syntax of software artifacts [35], [36]. These
tools can ignore unimportant conflicts such as code comments
or line breaks. While these tools can ensure that the merged
program is syntactically correct, they cannot prevent semantic
conflicts.

Semantic-based merge tools overcome these type of con-
flicts by employing ASTs, dependency graphs, program slic-
ing, and denotational semantics [28], [29], [37]–[41].

Operation-based merge tools, which are a flavor of
semantic-based tools, consider changes between versions as
operations. Nishimura et al. [42] proposed a tool that assists
developers with merge conflicts. Their approach reduces the
burden of manual inspection for developers by replaying fine-
grained code changes related to conflicting class members. Dig
et al. [8] proposed MOLHADOREF, a software configuration

management system that is aware of refactoring operations.
MOLHADOREF merges two software revisions by inverting
the refactoring operations, performing a textual merge, and
replaying the refactoring operations. However, they did not
empirically study how often refactorings cause conflicts, and
how effective their approach is on a large scale.

In addition to improving software merging algorithms them-
selves, some researchers proposed continuously running or
merging developer changes in the background to warn devel-
opers about potential conflicts before they actually occur [6],
[43], [44]. Finally, some researchers performed empirical
studies to predict merge conflicts [45], [46] or to understand
practitioners’ views on conflicts [27].
B. Refactoring

Researchers have used refactoring detection tools to study
how software evolves in the presence of refactorings. For
example, how refactorings impact bugs [47], [48], software
quality [49], or regression testing [50]. Other researchers
studied why and how refactorings happen [31], [51], [52].
However, to the best of our knowledge, there is no study that
investigates the relationship between refactorings and merge
conflicts.

There are a number of refactoring detection algorithms
and tools in the literature [32], [53]–[58]. However, most of
these tools have low precision and/or recall, need a similarity
threshold to determine if two parts of the code are related, and
require two fully-built versions of the software as an input in
order to utilize type-binding information from the compiler.
Aiming to mitigate such problems, Tsantalis et al. [12] recently
proposed a tool, named RefactoringMiner, which we use
in this work. RefactoringMiner does not require predefined
similarity thresholds, operates at both commit level and file
level, and achieves a precision of 98% and a recall of 87%.

VIII. CONCLUSION

Merge conflicts are a common problem for developers
in distributed software development. One possible cause of
complex merge conflicts are refactoring operations. In this
paper, we performed, to the best of our knowledge, the
first large-scale empirical study to understand the relation-
ship between refactorings and merge conflicts. We studied
almost 3,000 well-engineered open-source Java repositories.
Using RefactoringMiner, we detected refactoring operations
that were involved in merge conflicts.

Our results show that refactoring operations are involved in
22% of merge conflicts. Moreover, we find that conflicts that
involve refactorings are often more complex. Both findings
suggest that merging tool support that understands refactoring
can have a positive impact in practice. Such tool support can
vary from helping the developer understand the changes that
led to the conflict to automatically resolving the conflict for
them. However, our findings also show that the EXTRACT
METHOD refactoring is involved in more conflicts than its
typical frequency. This means that existing tools that rely
on reverting refactoring operations during merging may need
improvement.
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