
The Linux kernel: a case study of build system variability

Sarah Nadi*,† and Ric Holt

Software Architecture Group (SWAG), University of Waterloo, Ontario, Canada

SUMMARY

Although build systems control what code gets compiled into the final built product, they are often
overlooked when studying software variability. The Linux kernel is one of the biggest open source software
systems supporting variability and contains over 10,000 configurable features described in its KCONFIG files.
To understand the role of the build system in variability implementation, we use Linux as a case study. We
study its build system, KBUILD, and extract the variability constraints in its Makefiles. We first provide a
quantitative analysis of the variability in KBUILD. We then study how the variability constraints in the build
system affect variability anomalies detected in Linux. We concentrate on dead and undead artifacts, and by
extending previous work, we show that considering build system variability constraints allows more
anomalies to be detected. We provide examples of such anomalies on both the code block and source file level.
Our work shows that KBUILD contains a large percentage of the variability information in Linux, so it should not
be ignored during variability analysis. Nonetheless, the anomalies we find suggest that variability on the file
level in KBUILD is consistent with KCONFIG, whereas the constraints on the code level are harder to keep
consistent with both KBUILD and KCONFIG. Copyright © 2013 John Wiley & Sons, Ltd.

Received 6 July 2012; Revised 23 November 2012; Accepted 28 January 2013

KEY WORDS: software variability; variability anomalies; Linux; build systems; KBUILD

1. INTRODUCTION

Software variability allows users to configure different variants of a software system from the same
code base by selecting their desired features. To achieve this, variability is supported by different
parts of the software system such as source code, configuration scripts, and build scripts. Source
code files and configuration files have been extensively studied in terms of their variability [1–6].
However, studying the variability of the build system (usually consisting of Makefiles to compile
the source code) has fallen behind. Only a few papers, including previous work by us, have looked
at the variability of the build system [7–11]. In this paper, we argue that because the build system is
what really controls the composition of the final built product, its analysis is necessary in
understanding the overall variability of the system. To study its role in variability implementation,
we present a case study of the Linux kernel’s build system, KBUILD.

The Linux kernel is one of the most important and widely used open source software systems. Linux’s
variability allows it to be used for various purposes and by different users. As a simple example, a user
may choose to compile the kernel with Universal Serial Bus (USB) support, whereas another user may
choose not to. Such variability supports Linux’s portability where it can be used in different hardware
devices ranging from embedded systems to large scale servers. However, providing such variability
comes with the cost of a more complicated design, and thus, increased maintenance effort. This is
especially the case in Linux that supports over 10,000 features and serves millions of users.

*Correspondence to: Sarah Nadi, Software Architecture Group (SWAG), University of Waterloo, Ontario, Canada.
†E-mail:snadi@uwaterloo.ca

Copyright © 2013 John Wiley & Sons, Ltd.

JOURNAL OF SOFTWARE: EVOLUTION AND PROCESS
J. Softw. Evol. and Proc. (2013)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/smr.1595

Variability in Linux depends on three distinct artifacts shown in Figure 1: source code files
(code space), KCONFIG files (KCONFIG space), and KBUILD Makefiles (make space) [1, 7]. Each of
these spaces contains constraints governing the variability in the system. These constraints describe
the KCONFIG features that must be selected for a particular functionality to be present in the
compiled kernel, as well as which features are allowed to be simultaneously selected. The
constraints in all variability spaces must be consistent. For example, if KCONFIG feature F1 depends
on the absence of feature F2, written as !F2, and code block B1 depends on both F1 and F2, then
B1 will never compile because both features cannot be selected at the same time. We refer to such
cases as variability anomalies because they contain some unexpected behavior related to the
variability implementation of the system. Such anomalies may lead to decreased reliability and
increased maintenance effort.

To study variability in KBUILD, we implement a tool that extracts the constraints enforced in the
Makefiles (make constraints). These are the conditions that must be satisfied for a source file to
compile. We provide quantitative analysis of the variability in KBUILD by studying how KCONFIG

features are used in these make constraints. Through examining KBUILD’s Makefiles, we show that a
major part of Linux’s variability implementation occurs in KBUILD, and that most of Linux’s code
files are conditionally compiled under the control of the user’s feature selection. We then study the
effect of the extracted make constraints on variability anomalies in Linux. We do so by extending
previous work by Tartler et al. [1] that detected code anomalies by analyzing the constraints in the
code space and KCONFIG space using the tool, UNDERTAKER [12]. However, they do not include the
make constraints as part of their analysis. We extend their work to consider the make constraints in
the anomaly detection process. Our results show that more variability anomalies are discovered
when the make constraints are considered. We examine two types of variability anomalies (dead and
undead artifacts) at two levels of analysis (code blocks and code files).

This paper is an extended version of our earlier work [11], which was the first work to examine the
effect of the make space constraints on variability anomalies in details and contributed the following:

• A technique to extract the variability constraints from Linux Makefiles.
• Boolean formulas needed to use the make constraints to detect anomalies as an extension to the
work by Tartler et al. [1].

• Demonstration that the make constraints allow us to detect more variability anomalies.

We extend that work to provide a more in-depth study of variability in KBUILD, by providing
the following:

• Quantitative analysis of the use of features in KBUILD to control source file compilation.
• A set of metrics partly adapted from previous work [6] to quantify variability in KBUILD.
• An improved extractor to derive more accurate make constraints from KBUILD.
• An updated analysis of the effect of make constraints on variability anomalies using the
modified extractor.

The rest of this paper is organized as follows. Section 2 provides background information about
variability in the Linux kernel. Section 3 describes the tools we use in our analysis including our
make space constraint extractor and UNDERTAKER. Section 4 presents our quantitative analysis of the
variability in KBUILD. Section 5 then reports the variability anomalies detected at both the code
block and code file level after considering the make constraints. Section 6 presents the threats to the
validity of this study. Section 7 presents related research, and Section 8 concludes this paper.

2. BACKGROUND: VARIABILITY IN THE LINUX KERNEL

Figure 1 illustrates the process of building the Linux kernel. The three variability spaces are shown in
dashed boxes, and each box consists of the Linux kernel artifacts that are part of the space. Linux is
configured through tools that read the KCONFIG files and display them to the user in menu format.
This produces two files containing the user’s feature selection: (i) .config used by KBUILD to
control which files become compiled, and (ii) autoconf.h included by the gcc compiler in all

SARAH NADI AND RIC HOLT

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

source files to control which parts of the code become compiled. Thus, there are two levels of
variability control in Linux: the file level (i.e., conditionally compiling whole source code files) and
the code block level (i.e., conditionally compiling code blocks within source files). We now explain
how each of these artifacts supports variability in Linux.

2.1. KCONFIG space (K)

The KCONFIG space K consists of KCONFIG files that describe the various features of the Linux kernel
and their interdependencies. Each directory usually contains a KCONFIG file to describe the features
related to the functionalities of this directory. For example, Figure 1 shows a snippet from the
KCONFIG file in the security subsystem folder.{ In lines 1 and 3, two features, SECURITY and
SECURITY_PATH, are defined. Both features are of type bool, which means that they are either
present or not. The SECURITY_PATH feature depends on the feature SECURITY (line 5), which
means that the user will not be able to select SECURITY_PATH unless SECURITY is also selected.
Such relationships are what we refer to as the KCONFIG constraints. Further details on the format of
KCONFIG files and the types of features can be found in other work [2, 5].

2.2. Code space (C)

The code space C consists of C source and header files, as well as some scripts that implement
the functionality of the kernel. Certain parts of the code are conditionally compiled. That is, they
are only compiled if certain configuration features are selected. This is performed by using C
preprocessor (CPP) directives such as #ifdef and #ifndef. Entries in autoconf.h contain the
user’s selection in a format understandable by CPP. For example, when SECURITY is selected, the
following entry will be generated in autoconf.h: #define CONFIG_SECURITY 1.} In
Figure 1, the code space snippet from security.c contains a code block, B1, that is guarded by
the CPP directive CONFIG_SECURITY_PATH. This means that B1 will only be compiled if the
user selects this feature (i.e., the feature has a corresponding definition in autoconf.h). We refer
to such constraints as the code constraints.

{Code snippets have been slightly modified for simplicity and better illustration.
}Note that there is a convention that a CONFIG_ prefix is attached to the name of the features in these generated files.

Figure 1. Linux build process.

LINUX BUILD SYSTEM VARIABILITY

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

2.3. Make space (M)

The make space, which is the focus of this paper, is responsible for compiling source files into the final
executable product through KBUILD. KBUILD consists of Makefiles that use a special notation to
conditionally compile whole source files and are read by the tool make. KBUILD uses the file .
config to read the user’s selection. For example, if the user selects feature CONFIG_SECURITY,
an entry CONFIG_SECCURITY =y is generated in .config.

Each source directory usually contains a Makefile that controls the compilation of files in that
directory. A list called obj-y is used to collect the files that will be compiled. Figure 1 shows
snippets from two separate Makefiles in the security directory. In the first file, security/
Makefile, line 1 indicates that the source file commoncap.c will be compiled into commoncap.
o and unconditionally added to the obj-y list. Line 2 indicates that security.c will be
compiled into security.o only if CONFIG_SECURITY is selected by the user. This means
that CONFIG_SECURITY has the value ‘y’ in .config, and thus, the expression will evaluate to
obj-y += security.o that adds the compiled file security.o to the list of files in the final
compiled kernel image. We refer to such constraints as the make constraints.

In some cases, a whole directory can also be conditionally compiled. For example, line 3 of the top
Makefile snippet in Figure 1 indicates that the directory keys (i.e., the files within it) will only be
compiled if CONFIG_KEYS is selected. This indicates to MAKE that it should descend into the
keys directory and read the Makefile there.

3. TOOLS USED TO ANALYZE KBUILD VARIABILITY

Our work is divided into two main parts. The first explores and quantifies variability in KBUILD and the
second determines the effect of this variability on anomalies in Linux. To accomplish this, we need two
sets of tools or analyses. The first for extracting variability constraints in KBUILD and the second for
detecting anomalies. For the first, we develop a Makefile constraint extractor, MAKEX, and for the
second, we use the results of MAKEX and extend UNDERTAKER to detect anomalies. In this section,
we explain how MAKEX and UNDERTAKER work. The performance reported in both cases is based
on using a machine with two quad-core Intel Xeon 2.67GHz CPUs and 16GB RAM.

3.1. Extracting make constraints

3.1.1. MAKEX. A presence condition of a source file determines when this file is compiled. To extract
these presence conditions, we implement a prototype constraint extractor MAKEX

} that recursively
reads all the Makefiles in the source code directories and generates the corresponding constraints.
Listing 1 shows an example of such constraints extracted from the Makefiles in Figure 1.

Because some source files are only compiled on certain CPU architectures, we extract a different set
of make constraints for each CPU architecture supported in Linux. MAKEX is implemented in Java and
uses text-based pattern matching to extract the constraints from the Makefiles. MAKEX searches for the
obj-y occurrences and the files added to them. For example, the first line in the top Makefile snippet
in Figure 1 indicates that commoncap.c is compiled unconditionally. Therefore, MAKEX generates
the entry in line 1 in Listing 1 that means that this file has no constraints.** The second line in the
Makefile snippet in Figure 1 means that security.c is only compiled if CONFIG_SECURITY is
chosen. In this case, MAKEX generates the constraint in line 2 of Listing 1.

Line 3 of Listing 1 indicates that proc.c is compiled only if both CONFIGCONFIG_PROC_FS
and CONFIG_KEYS are selected. This is because any file in the keys directory is only compiled if
CONFIG_KEYS is selected (line 3 of the first Makefile in Figure 1), whereas file proc.c itself is
compiled only if CONFIG_PROC_FS is selected (line 1 of the second Makefile), which means that
we have to combine both conditions when generating the corresponding make constraints.

}MAKEX is available online at http://swag.uwaterloo.ca/~snadi/KbuildVariability.html
**Note that when writing out the constraints, we use the .c extension of the file name.

SARAH NADI AND RIC HOLT

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

http://swag.uwaterloo.ca/~snadi/KbuildVariability.html

3.1.2. Limitations and evaluation. Linux’s Makefiles are difficult to parse statically [13] because they
use specialized and complicated syntax to represent special cases and are not consistently structured.
The previous section has illustrated the most common entries and patterns responsible for source file
compilation in KBUILD. There are other more specialized patterns scattered throughout the Makefiles
in KBUILD. Some of these are discussed in our previous work [7, 11]. For each pattern we
recognize, we need to add a new pattern matching function in MAKEX’s implementation. In our
original work [11], we ignored some special cases such as conditional blocks in Makefiles. In this
paper, we improved MAKEX to handle conditional blocks in Makefiles, as well as some special cases
such as the use of machine-y to specify machine directory names in the ARM architecture. For
example, the entry machine-$(CONFIG_ARCH_AT91) :=at91 actually indicates visiting the
directory mach-at91/ if feature ARCH_AT91 is selected.

Although MAKEX still has some limitations because of static parsing challenges, it achieves a
reasonable coverage rate in terms of covering the variability points in KBUILD. There are three
coverage metrics we use for evaluation: (i) percentage of Makefiles MAKEX analyzes, (ii) percentage
of .c files MAKEX finds presence conditions for, and (iii) percentage of KCONFIG features used in
KBUILD for which MAKEX found presence conditions using them. For the first metric, we achieve a
75% Makefile coverage rate, which means that we analyzed 75% of the Makefiles present in the
kernel. For the second metric, we achieve an 85% source file coverage rate, which means that we
were able to find presence conditions for 85% of the source files present in Linux. In the initial
version of MAKEX used in our previous work [11], we only achieved a 74% source file coverage
rate. Thus, we have improved our source file coverage rate by 11% when we considered more of the
special cases used. For the third metric, the feature coverage rate of MAKEX is 93% (i.e., MAKEX

was able to see the effect of 93% of the KCONFIG features appearing in Makefiles).

3.1.3. Performance and scalability. MAKEX runs in a single thread starting from the Makefile in the
root of the kernel’s source code directory and recursively reads nested Makefiles as needed. Analyzing
all architectures in a single release of the Linux kernel runs in approximately 51 s. Although it is quite
fast, its limitations lie in having to customize the patterns detected according to the system being
analyzed. However, for the purposes of exploring KBUILD, and not providing a comprehensive tool,
such limitation does not affect our results.

3.2. UNDERTAKER and anomaly detection

3.2.1. Overview. Because variability information is stored in three different places (KCONFIG files, source
code files, and Makefiles), inconsistencies are likely to arise. The UNDERTAKER tool [1] extracts the
constraints for each CPP guarded code block as well as the constraints in the KCONFIG files. These
constraints are then combined into a Boolean formula that is fed into a satisfiability (SAT) solver that
tries to satisfy the formula. If there are conflicts between the constraints, then the formula cannot be
satisfied and the SAT solver reports that. An unsatisfiable formula suggests an anomaly. Anomalies are
manifested as dead and undead code blocks. A dead block is a CPP-guarded block that can never be
compiled on any valid configuration, and an undead one is a CPP-guarded block that is always compiled
when its parent†† is compiled. In this work, we use the latest version of UNDERTAKER (version 1.3).

To study the effect of the variability constraints in KBUILD, we use the make constraints extracted
from KBUILD (Section 3.1) and include them in UNDERTAKER’s analysis of dead and undead code
blocks. We also modify the analysis to work at the file level to detect dead and undead source files.
We combine the constraints from all three spaces (KCONFIG space (K), code space (C), and make

††A CPP guarded block has a parent if it is nested within another CPP guarded block.

LINUX BUILD SYSTEM VARIABILITY

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

space (M)) in Boolean formulas that if not satisfied, detect dead and undead artifacts as shown in the
succeeding text. BN or BlockN denote a code block, and FN or FileN denote a whole source file. The
formulas essentially ensure that a code block or code file is a variable such that there are
configurations where it will be compiled and others where it will not be compiled.

DeadBN ¼ :sat BlockN∧C∧M∧Kð Þ (1)

UndeadBN ¼ :sat :BlockN∧parent BlockNð Þ∧C∧M∧Kð Þ (2)

DeadFN ¼ :sat FileN∧M∧Kð Þ (3)

UndeadFN ¼ :sat :FileN∧M∧Kð Þ (4)

For code block formulas, constraints from all three spaces are combined. For file formulas, only
constraints from the make and KCONFIG spaces are combined because we do not look at the block
level. More details about how the Boolean formulas are derived can be found in our previous work
[11]. As an example of using these formulas, consider the code block B1 shown in the code snippet
in Figure 1. From the code space, B1 depends on CONFIG_SECURITY_PATH. From the make
space, the whole source file security.c depends on CONFIG_SECURITY, and from the
KCONFIG constraints, CONFIG_SECURITY_PATH depends on CONFIG_SECURITY. If we want
B1 to compile, all these constraints must be satisfied. Listing 2 illustrates the combination of the
three sets of Boolean constraints according to Formula 1 to determine if B1 will compile. If this
formula cannot be satisfied, then B1 will never compile, and thus, will be dead. In Listing 2, the
formula can be satisfied, so no anomaly is detected.

3.2.2. Performance and scalability. The analysis in UNDERTAKER is extremely parallelized such that
several code blocks can be simultaneously evaluated to improve performance. When detecting
anomalies using UNDERTAKER, an analysis of a single Linux release takes approximately 45min to
run using four parallel threads. Given the size of the whole kernel, such performance is acceptable.

4. MEASURING VARIABILITY IN KBUILD

In this section, we investigate the extent of the role played by KBUILD in the variability implementation
in Linux. To do so, we need to measure the variability in KBUILD and compare it to the rest of the
system, where applicable. In this section, we first explain the metrics we use. We then describe the
setup and results of our analysis, and then provide our interpretation of these results.

4.1. Metrics

To the best of our knowledge, there are no standard metrics to measure variability and its complexity.
Some metrics were introduced by Liebig et al. [6] to measure CPP variability in code. We adapt some of
these metrics (NOF, SD, TD, and GRAN) for measuring variability in KBUILD and also introduce some
of our own (POF, POCCF, POCCD) as follows:

Number of features (NOF) and percentage of features (POF). The variability in Linux arises from
its configuration features. All features (K) are defined in the KCONFIG files and control the final com-
piled kernel in one of two ways: in the code space (C) through cpp directives or in the make space (M)
to control source file compilation. Some features may be used in neither or in both spaces. This yields
four categories of uses of KCONFIG features: (i) K�C�M, features that are not used in neither the

SARAH NADI AND RIC HOLT

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

code nor make spaces but are rather used internally within KCONFIG to support dependency constraints
between other features, (ii) C�M, features that are only used in the code space, (iii) C ∩M, features
that are used in both the code and make spaces, and (iv) M�C, features that are only used in the make
space. We use the NOF and POF metrics to describe the number and POF in each of the four categories
as follows:

1. NOFK�C�M (or POFK�C�M): number (percentage) of features that are defined in KCONFIG and
only used there.

2. NOFC�M (or POFC�M): number (percentage) of KCONFIG features only used in code space.
3. NOFC∩M (or POFC∩M): number (percentage) of KCONFIG features used in both code and make

spaces.
4. NOFM�C (or POFM�C): number (percentage) of KCONFIG features only used in make space.

Percentage of conditionally compiled files (POCCF) and percentage of conditionally compiled
directories (POCCD). The POCCF and POCCD metrics measure the percentage of files and direc-
tories, respectively, in KBUILD that are conditionally compiled according to some feature selection.
Such a metric illustrates how much variability is present at the source file level. That is, whether most
files are conditionally compiled or are compiled by default in every variant.
Scattering degree (SD) and tangling degree (TD): We use these metrics to quantify feature usage in
KBUILD. The SD of a feature is its number of occurrences in different file presence conditions in
KBUILD. Conversely, the TD is the number of different features that occur in a file presence condition.
For each release, we state a single SD or TD that calculates the average for that release.
Granularity (GRAN): KCONFIG features used in KBUILD control the compilation of specific source
code files as well as whole directories. We consider two levels of GRAN of control. At a high level
of GRAN, a feature controls a directory that generally contains several source files implementing
some related functionality, for example, sound or USB support. We define GRANdir as the POF
used in KBUILD that control directories. At a low level of GRAN, a feature only controls the com-
pilation of source code files that generally implement a specific part of this functionality. We use
GRANfile to measure the POF used in KBUILD that only control source code files. Note that high
level GRAN features still appear in the presence conditions of source code files. This is because
source code files in a directory will not be compiled unless their containing directory is also com-
piled (Section 2.3).

4.2. Analysis and results

We study 10 recent versions of Linux spanning a period of around 2 years. Examining several releases
ensures that conclusions we draw are not just specific to one release. It also provides an evolutionary
view of KBUILD variability. All numbers reported (unless otherwise specified) are the median of the
metric being measured over all releases examined. We divide our results into four questions.

1. Howmany KCONFIG features does each space use?We use NOF and POF tomeasure the variability
in each space in terms of the number and POF used. Figure 2 presents our findings in terms of how
KCONFIG features are used according to the four categories explained earlier. Figure 2 shows that the
total NOF defined in KCONFIG, NOFK (column height), is growing in each release. When we
compare percentages to see which part of the system uses most of these features, we find that the
POF used in the make space, POFM,

{{ is 63% versus 35% used in the code space (POFC
}}) that

suggests that more variability takes place in KBUILD. Over the 10 releases examined, POFM�C is
48%, whereas POFC�M is 17%. This means that a higher POF are only used in KBUILD to control
whole source file compilation rather than being used in the code to control code block compilation.
Additionally, if we look at the percentages shown in each category over the releases, we can see that
POFM�C is growing, whereas POFC�M and POFC∩M represent about the same percentage in all
examined releases.

{{POFM is obtained by adding POFM�C and POFC ∩M in Figure 2.
}}POFC is obtained by adding POFC�M and POFC∩M in Figure 2.

LINUX BUILD SYSTEM VARIABILITY

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

Finding 1: The majority of KCONFIG features are used in the make space. A total of 46% of KCONFIG

features are only used in the make space, and this percentage is growing over time.

2. How many files and directories are conditionally compiled in KBUILD? Our analysis shows that
throughout these 10 kernel releases, the POCCF is 92%. This means that 92% of the source code
files’ compilation depends on one or more KCONFIG features. Similarly, the POCCD is 84%.
These numbers indicate that most of the source files within Linux are controlled by the user’s
selection of configuration features and are not compiled by default.

Finding 2: A total of 92% of source files and 84% of source directories are conditionally compiled.

3. What GRAN do features mostly control in KBUILD? For all 10 releases, we find a GRANfile of 88%,
which means that 88% of the features used in KBUILD control the compilation of source files only (i.
e., lowGRAN), whereas the remainder 12% control both files and directories (i.e., high GRAN).We
use v3.3 in Figure 3 to show the number of directories and source files controlled by each
configuration feature we found. Each dot on the graph corresponds to a particular configuration
feature that appears in KBUILD as found by MAKEX (total of 7543 features) and shows the
number of directories and files it controls. The distribution of feature usage is skewed towards the
bottom left that indicates that most of the variability in KBUILD is at a low level of GRAN. We
find that on average, a feature controls 0.2 directories and three source files, and that around 78%
of these features control exactly one source file.
To illustrate how this control works, consider the SCSI feature (circled on the graph). Its
corresponding flag CONFIG_SCSI controls 30 directories and 303 files that support the SCSI
driver. Directories controlled are an example of high level GRAN. Now, we will consider the
specific bus types within the SCSI driver. These are at a lower level of GRAN and represent
more specific functionalities governed by additional features besides SCSI. For example, file
in2000.c in SCSI’s directory implements an ISA SCSI host adapter that is only compiled
if both SCSI and SCSI_IN2000 flags are turned on. SCSI_IN2000 is an example of a low
GRAN feature.Figure 3 also shows several outliers in the right half of the graph. Two main
outliers shown on the top right are features STAGING and SND. STAGING controls the
drivers/staging directory that contains code that is still under development and has not
been finalized for full integration into the kernel yet. The fact that feature STAGING is an
outlier comes at no surprise because there are 62 directories directly under the /drivers/
staging/ directory apart from the subdirectories under each of those. The staging
directory itself would not be visited unless the STAGING feature is selected. The need for the
STAGING feature to be selected would then be propagated to all subdirectories and files
underneath it that results in STAGING controlling 84 directories and 531 files. The same
applies to SND that controls the SOUND directory that has 21 main directories.

Figure 2. Feature usage across Linux releases. NOF is number of features used in KCONFIG space only (K-C-M),
code space only (C-M), make space and code space (M ∩C), and make space only (M-C).

SARAH NADI AND RIC HOLT

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

Finding 3: A total of 88% of the features used in KBUILD have low level GRAN control whereas 78%
control exactly one source file.

4. How complex are the make constraints? We next examine particular aspects of the presence
conditions of the source files in Linux to determine how many features usually control the
compilation of a source file. We find that although more than half of the KCONFIG features are
used in KBUILD, the presence conditions of files are not complex. We find that the TD of features
in the presence conditions is 2. This means that conditionally compiled files have an average of
only two configuration features in their presence conditions. These two features are usually the
feature controlling the directory, and then the feature controlling the specific lower level
functionality (e.g., line 3 in Listing 1). If we only consider the features that directly control a file
(i.e., apart from the feature(s) that control the file’s directory), we find that 76% of source files
have only one feature in their presence condition. We also found that the SD of a feature used in
KBUILD is 2, which means that on average, a feature appears in two different presence conditions.

Finding 4: The Presence conditions of files in KBUILD are not complex. The make space constraints
have a TD of 2 features, and features used in KBUILD also have a SD of 2. Additionally, 76% of source
files have only one feature in their presence condition (apart from the directory control feature).

4.3. Interpretation of findings

Finding 1 implies that variability in the make space is growing in terms of its usage of KCONFIG features
with respect to the rest of the system.We explain this phenomenon as follows. Each time a new source file
is added to the Linux kernel source code, an entry must be created in KBUILD so that the file compiles. The
majority of new kernel code is drivers implementations, and drivers are usually conditionally compiled
because they differ from one platform or machine to another. This means that each time a new driver is
added, a feature is added for it in KCONFIG so that the user can select it, and this feature will control the
compilation of the implementation source file in KBUILD. Given Finding 2 that 88% of source code
files are conditionally compiled, we can safely say, that in most cases, whenever a new file is added, a
new configuration feature will be used to control it in KBUILD. However, the same does not apply for
#ifdef variability. A new file may be added with an entry in KBUILD, but this file may not contain any
#ifdef blocks. Thus, most files will have a conditional compilation entry in KBUILD but not necessarily
conditionally compiled blocks.

If we look at Findings 3 and 4 together, we can deduce that there is commonly a one to one mapping
between a feature and the source file it controls. This means that most of the time, a file depends on a single
feature, and this feature only controls this file. This is an interesting characteristic of the Linux kernel
because it indicates that the user’s selection directly controls the compilation of whole source files.

Figure 3. Granularity of control of features in KBUILD v3.3. Each point represents a KCONFIG feature used in
the Makefiles.

LINUX BUILD SYSTEM VARIABILITY

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

5. EFFECT OF KBUILD ON DETECTING VARIABILITY ANOMALIES

5.1. Overview

The findings of the previous section show that more KCONFIG features are used in KBUILD to control
source file variability as opposed to being used in the code space to control code block variability. This
serves as a motivation for further studying the effect of this variability on the quality of the kernel. We
do this by analyzing the effect of the constraints in KBUILD on variability anomalies in the Linux
kernel. In this section, we discuss the results of this analysis that detects dead and undead code
blocks and code files in the Linux kernel. In both levels of analysis, we investigate the effect of
adding the make constraints on discovering variability anomalies. That is, on a block level, we
compare using only the constraints from the code space and KCONFIG space versus also adding the
make constraints. On the file level, we investigate if we can find any dead or undead files due to
conflicts between the make constraints and the KCONFIG constraints.

We use the same 10 kernel releases from the previous section. For each release, we run the analysis
on the code block level and on the file level. In this work (as opposed to our previous work [11]), we
choose to ignore the drivers/staging directory in our analysis. The staging directory by
definition contains code that has not been completely finalized, and so is expected to still contain
some anomalies. To avoid skewing our results, and to focus on anomalies in the actual kernel code,
we do not perform our block or file level analysis on any of the files in the staging directory.

Variability anomalies mainly arise from conflicts between constraints in one or more of the three
spaces supporting variability in Linux. On the block level, these conflicts include the following:

1. Code: conflict within code constraints themselves, for example, dead block: B1 -> F1 & !F1.
2. Code-KCONFIG: conflict between code constraints and KCONFIG constraints, for example, dead

block: (B1 -> F1 && F2) && (F1 -> !F2).
3. Code-make: conflict between code constraints and make constraints, for example, dead block:

(B1 -> !F1) && F1 where F1 is the presence condition of the code file containing B1.
4. Code-make-KCONFIG: conflicts between combination of code, make, and KCONFIG constraints,

for example, undead block: (B1 -> F1) && F2 && (F2 -> F3 && F1).
5. Code-KCONFIG missing: conflicts between code and KCONFIG constraints because of missing

feature definitions, for example, dead block: (B1 -> F2) && (F2 -> F3), but F3 is not
defined in KCONFIG.

6. Code-make-KCONFIG missing: conflicts between all three spaces because of missing feature
definitions, for example, dead block: (B1 -> F1) && F2 && (F2 -> F3), but F3 is not defined
in KCONFIG).

On the file level, the code space no longer plays a role, so anomalies may arise because of the
following:

1. Make-KCONFIG: conflicts between make constraints and KCONFIG constraints, for example, dead
file: (File1 -> F2 && F3) && (F3 -> !F2).

2. Make-KCONFIG missing: conflict between make constraints and KCONFIG constraints due to miss-
ing feature definitions, for example, dead file: (File1 -> F2) && (F2 -> F3), but F2 is not
defined in KCONFIG.

The next section presents the results of our analyses and discusses illustrating anomaly examples in
various categories.

5.2. Results

Block level. When we enhance the block level analysis with make constraints, we detect an average of
20% additional anomalies when compared with just using the code and KCONFIG constraints. Figure 4
shows the percentage of additional code block anomalies (both dead and undead) detected in each of
the three categories involving make constraints. Throughout the 10 releases shown in Figure 4, we
can see that the anomalies caused by conflicts between all three spaces (code-make-KCONFIG)
constitute most of the additional anomalies detected. Because detecting this category of anomalies

SARAH NADI AND RIC HOLT

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

requires solving a complex SAT formula, it suggests that these anomalies are hard to find manually by
the developer and that having automated tools to detect them is important.

Finding 5: Considering the make constraints when detecting variability anomalies allows more
anomalies to be detected (20% increase).

Finding 6: Code block anomalies caused by a conflict between all spaces (code-make-KCONFIG)
are more common and are also harder to manually detect by developers.

File level. On the code file level, we detected an average of 56 dead files in each release because of
missing KCONFIG definitions. This means that the file either directly or indirectly depends on a feature
that is not defined in KCONFIG and therefore never becomes compiled. Over the 10 releases examined,
there was a total of 52 unique dead files (an anomaly can persist over several releases). We did not
detect any undead files.

Finding 7: Dead files detected are caused by missing features. No dead files due to direct conflicts
between make and kconfig spaces found.

We now provide examples in each of the anomaly categories involving make constraints on both
levels of analysis.

5.2.1. Code-make block anomalies. Code-make anomalies are a result of a direct conflict between the
code constraints and the constraints in the Makefiles. Over the 10 releases examined, we found 11
distinct code-make anomalies. We found that in some cases, these dead blocks are intentional by the
developers so that they mark invalid feature configurations in the code. For example, two dead blocks
contained code such as #error invalid SiByte UART configuation and #error unknown
platform, which means that the developers are aware that the feature combinations enabling these
blocks should never happen. The remaining dead and undead code-make block anomalies involved
actual code. We investigated two of these anomalies that occurred in file arch/sparc/kernel/
jump_label.c. According to the make constraints, this file is only compiled if SPARC64 is
selected. Within the actual file, there is a code block that does one thing if SPARC64 is selected and
another if it is not. However, because the file will not be compiled without this feature in the first place,
then the block depending on it is always selected (i.e., undead), whereas the other block is never
selected (i.e., dead). We submitted a patch to remove this unnecessary check, but the developer replied
that the check is there so that 32-bit support is easy to add in the future if someone wants to do that.

Figure 4. Percentage of additional code block anomalies due to adding the make constraints to the analysis.
The code-make represents the smallest percentage of anomalies detected.

LINUX BUILD SYSTEM VARIABILITY

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

This response indicates that developers might intentionally leave dead/undead code behind for future
anticipated maintenance. On the other hand, we submitted another patch for a different dead code-make
block in file arch/m68k/sun3/prom/init.c, and the developer accepted the patch stating that
this dead code has been copied from elsewhere, but it is actually not relevant to the functionality here
and shall be removed.

5.2.2. Code-make-KCONFIG block anomalies. Anomalies in the code-make-KCONFIG category are
caused by a conflict involving all three spaces. This category differs from the previous one in that it
is not caused by conflicts of direct dependencies in the code and make spaces but conflicts caused
by indirect dependencies that are exhibited in the KCONFIG constraints. Figure 5 provides an
example of a code-make-KCONFIG anomaly.}} As shown in the example, the code file depends on
PCMCIA as indicated in the Makefile. Code block B1 depends on HOTPLUG, whereas code block
B2 depends on !HOTPLUG as shown in the code. In the KCONFIG file, we can see that PCMCIA
depends on PCCARD which in turn depends on HOTPLUG. This means that given the file is
compiled, block B2 can never be selected because HOTPLUG will always be enabled for the file to
compile. This is shown in the Boolean formula illustrated in Figure 5.

5.2.3. Make-KCONFIG file anomalies. In our previous work [11], we had reported a few dead files in
this category, but after some investigation, we discovered that this was due to an error in the KCONFIG

parsing carried out by UNDERTAKER, which we had reported. After correcting this error in our current
work, we did not detect any dead files in this category.

5.2.4. Missing features. Missing features are those that appear in the presence condition of a code
block or file but have no definition in KCONFIG [1]. These can appear on the block or file level of
the analysis and result in the code-make-KCONFIG missing and make-KCONFIG missing anomaly
categories. Features that are missing on the code file level causing the file to be dead will also be
missing on the block level for the code blocks within that file. However, on the code file level, only
one anomaly would be reported for the whole file, whereas on the block level, several anomalies
would be reported for each dead/undead code block in the file.

For example, four different dead code-make-KCONFIG missing block anomalies were detected in the
file drivers/spi/spi-stmp.c directory. The make constraints indicate that SPI_STMP3XXX
needs to be defined for the source file to compile. However, SPI_STMP3XXX depends on another
feature, ARCH_STMP3XXX, which has no KCONFIG definition. Thus, all the conditional code

Figure 5. Example of a code-make-KCONFIG dead block anomaly.

}}Snippets have been slightly modified for simplicity and better illustration. Original files contain concepts not discussed
in this paper such as menuconfig and tristate [5] in KCONFIG files and composite variables in Makefiles [11].

SARAH NADI AND RIC HOLT

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

blocks in the file are reported as code-make-KCONFIG missing. On the file level, the same missing
feature caused the file to be dead but only one anomaly report is generated. This anomaly has been
introduced in v3.1 by creating the code file, and its entry in the Makefile, and has stayed in the
kernel until the last release we examined, v3.6.

5.3. Interpretation of findings

Because we did not find any dead files due to direct conflicts between the make space and KCONFIG

constraints (Finding 7), this suggests that there is usually no direct conflict between the presence
condition of a file and the KCONFIG constraints related to that presence condition. However, there are a
number of conflicts between the presence condition of a file, and that of the code blocks within the file
along with the KCONFIG constraints related to them (Finding 6). This suggests that although a large
percentage of the KCONFIG features are used in the Makefiles, developers have no problem choosing the
right feature to control a file without breaking the KCONFIG constraints. This may be the case because
there is a one-to-one mapping between features and the files they control, and a source file usually has a
single entry in KBUILD that makes it easier to manage. On the other hand, keeping the code block
presence conditions in sync with those of the whole file as well as the KCONFIG constraints seems more
of a challenge. The inconsistencies we detect suggest that more automatic support for consistency
checking at the block level is needed. Integrating tools such as UNDERTAKER into the development
process where developers can check if their changes caused any inconsistencies may be helpful.

Our analysis shows that some of the anomalies caused by missing features on the block level may
also be caught on the file level but with fewer anomalies presented to the developer (e.g., see the
missing feature ARCH_STMP3XXX example in Section 5.2). However, many of the anomalies
dealing with conflicts of constraints are only unique to the block level. Thus, it may be less time
consuming for developers to start the analysis at the file level, and solve the issues there, which in
turn will remove many of the block level anomalies, and then move down to the block level
analysis to detect any remaining issues.

6. THREATS TO VALIDITY

6.1. Internal validity

In this work, we emphasize the importance of considering make constraints in variability analysis.
Because we are extending the UNDERTAKER tool to discover variability anomalies, any shortcomings
in their analysis will be reflected in our analysis. The UNDERTAKER tool is an ongoing work, and its
authors are constantly updating it. Therefore, running the analysis with a different version could
possibly yield a different number of anomalies.

Any problems with our extraction of the make constraints will also affect the results. There are
certain parts of the Makefiles that are hard to parse using textual pattern detection. In our work so
far, there are some of these aspects that we ignore such as #define’s used with the Makefiles to
define additional variables that are later used. However, the frequency of such cases in the parts of
the Makefiles that deal with KCONFIG features is low.

In terms of the anomalies discovered, some of these do not necessarily reflect errors. We choose to
use the term anomaly precisely for this reason. A dead artifact may exist because of bad maintenance,
and an undead artifact may be used as a form of checking that certain conditions actually hold. In both
cases, we believe that developers should still be aware of such anomalies because they are potential
sources of errors and undesired behavior.

6.2. External validity

We only examine one software system, Linux. However, Linux is the largest open source software
system available. Our results, which conclude that most of the variability is implemented in the
build system and that the constraints in the build system cause some variability anomalies, do not
necessarily apply to other systems. Linux’s build system, KBUILD, is complex and unique in terms

LINUX BUILD SYSTEM VARIABILITY

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

of the customized notation it uses. However, there are many other configurable systems that use a
similar structure for their build systems (e.g., BUSYBOX and BUILDROOT). Although we do not
attempt to generalize our results beyond Linux, we believe that this work provides interesting
findings that can be used to guide the study of variability in other build systems. To generalize and
categorize variability anomalies caused by build systems beyond Linux, we plan to apply our
analysis to other systems in order to improve external validity. This will also allow us to determine
how variability is generally implemented in build systems, where other systems differ from KBUILD,
and whether the technique used affects the quality of the software system.

7. RELATED WORK

Our work relates to two research areas: software variability and build systems. Software variability
research studies how configurable software systems support variability and how they evolve over
time. We divide build system research into three areas: studying the complexity of build systems,
studying variability in build systems, and extracting variability constraints from build systems.

7.1. Software variability

The Linux kernel has been one of the main subjects of variability research due to its large size and the
large number of supported features. The work on the Linux kernel (as well as other systems) has
mainly focused on studying configuration and source code files (e.g., [1–3, 5, 14–17]). These papers
focus on extracting the variability constraints from the source files and configuration files, and
studying these constraints in terms of understanding things such as the feature model size, the
evolution of constraints, as well as the evolution of both artifacts together.

Propositional logic has often been used to study the constraints in feature models. For example,
Zengler [4] has encoded the constraints in KCONFIG as a single propositional logic formula that can
be verified to ensure that the combination of features is valid. However, such a formula is very
large, and would be very difficult to analyze. This is one reason why we opted for using the
KCONFIG propositional encoding by Tartler et al. [1] as they provide a slicing algorithm that only
chooses the constraints related to the artifacts in question.

7.2. Build systems

7.2.1. Complexity of build systems. Adams et al. [13] developed a tool, MAKAO, for visualizing and
manipulating build systems and have applied it to KBUILD. They mainly focused on the targets that
appear in Makefiles and their dependencies but did not study the configuration features that appear
in Makefiles and how they contribute to Linux’s configurability. Other work also by Adams et al.
[18] studied the evolution of the Linux KBUILD files and how these files co-evolve with the source
code. Their findings showed that the build system’s complexity grows over time in terms of its size,
and the number of targets it supports. McIntosh et al. [19] found similar findings for Java build
systems. Both sets of work suggested that studying build systems is important and that they
consume a fair amount of the maintenance effort for any system.

7.2.2. Build system variability. It is our understanding that Berger et al. [8] were the first to discuss
variability in the Linux build system. They showed that the extraction of presence conditions of
source code files from Makefiles is feasible and extracted them for the x86 architecture in Linux and
for all of FreeBSD. Our quantitative analysis of KBUILD is based on all Linux CPU architectures
over a longitudinal study and not solely on the x86 architecture. We also show the effect of these
constraints on the variability of the final compiled kernel image through the anomalies we detect.

Dietrich et al. [9] found that KBUILD v3.1 alone uses almost 50% of the KCONFIG features in Linux. Our
work is different in that we perform an evolutionary study with several releases of KBUILD. We also adapt
previous metrics used to measure CPP variability to customize them for KBUILD. This allows for
standardization of future quantitative analysis of variability. Additionally, we also analyze the

SARAH NADI AND RIC HOLT

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

complexity of constraints and GRAN of control within KBUILD. This provides a better overall picture of
the variability in KBUILD and how it contributes to the configurability of the whole Linux kernel.

7.2.3. Extracting and using KBUILD variability constraints. To the best of our knowledge, our
previous work [11], which this paper is an extended version of, was the first to analyze the effect of
variability in KBUILD on anomalies. Recently, the UNDERTAKER team have developed their own
make constraint extractor, GOLEM [10]. Their variability extraction approach is based on running
an actual Linux build using different configurations and probing it to see which files become built.
The advantage of their approach versus a static parsing approach such as ours and that of Berger et
al. [8] is that they avoid explicitly analyzing the complicated syntax and special cases that occur in
KBUILD. Currently, GOLEM takes about 90min to extract the constraints of a single CPU
architecture in Linux versus about 51 s for all architectures by MAKEX. Arguably, performance is
not everything, but such a high running time may affect the practicality of the approach. It is also
not clear yet if such a probing-based approach would catch all the complex constraints in KBUILD.
For example, it would not be able to correctly identify constraints containing negations (i.e., that a
feature should not be present) because they rely on incremental addition of features to the feature set
and then probing the build system on what files will be built. It is also difficult to correctly identify
disjunctions in some cases depending on the order the features become probed by. Thus, it seems
that both static and probing/dynamic-based approaches have their limitations. However, the goal of
our work is not to determine the most accurate parsing for Makefiles, but rather to clarify the role of
build systems in variability support so that it is recognized in future variability research.

8. CONCLUSIONS AND FUTURE WORK

The goal of this paper is to explore the role of build systems in variability implementation. To do so,
we have presented a case study of variability in Linux’s build system, KBUILD. We extracted the
presence conditions of source files from KBUILD (make constraints) using our developed extractor,
MAKEX, and used this information to provide two sets of results: a quantitative analysis of KBUILD

variability and the effect of such constraints on detecting variability anomalies in Linux. We
performed both analyses on the latest 10 stable releases of Linux.

We have found that KBUILD plays a key role in Linux’s variability implementation: 63% of
configuration features in Linux are used by KBUILD, and 92% of source files are conditionally
compiled in KBUILD. We have also found that 76% of source files have only one feature in their
presence condition, and that 78% of features control exactly one file. This suggests that in most
cases, there is a one to one mapping between a user-selected configuration feature and the source
file it controls.

To examine the effect of the extracted make constraints on variability anomalies, we extended
UNDERTAKER [1] to use our extracted constraints to detect variability anomalies in Linux. By
including the make constraints in the analysis, we detected additional anomalies at the code block
level and contrasted them with those detected by the original UNDERTAKER tool. We also performed
the analysis at the file level and discovered several dead files due to missing feature definitions.

The anomalies we detected suggest a need for automatic anomaly detection tools (especially at the
block level) that are easy to use by the developers and can be integrated in their regular development
cycle. Additionally, because #IFDEF usage is often discouraged [20] and our findings have suggested
that developers have less trouble managing variability at the file level in KBUILD, it might be
recommended to limit variability at the file level. Although such a limitation may not be feasible to
implement now in a long established system such as Linux, it might be useful for future systems
supporting variability to keep in mind. Such a design will also enforce more modularity in the
system that makes a system more maintainable.

We hope that our investigation of KBUILD opens the door for more research in the variability of
build systems. Our case study of Linux was a step in that direction. Studying software systems
besides Linux will help in clarifying the general role build systems play in implementing variability.

LINUX BUILD SYSTEM VARIABILITY

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

ACKNOWLEDGMENTS

Thanks to Daniel Lohmann for his feedback on the conference version of this work [11]. Reinhard Tartler
and Christian Dietrich have answered many of our questions about using UNDERTAKER. Many thanks to
our anonymous reviewers who provided us with helpful suggestions to improve this paper.

REFERENCES

1. Tartler R, Lohmann D, Sincero J, Schröder-Preikschat W. Feature consistency in compile-time configurable system
software: facing the linux 10,000 feature problem. EuroSys ’11: Proceedings of the 6th Conference on Computer
Systems, of ACM SIGOPS EC (ed.). ACM: New York, NY, USA, 2011. DOI:10.1145/1966445.1966451.

2. She S, Lotufo R, Berger T, Wąsowski A, Czarnecki K. The Variability Model of the Linux Kernel. VaMoS 2010:
Proceedings of the Fourth International Workshop on Variability Modeling of Software-intensive Systems, 2010.

3. Sincero J, Tartler R, Lohmann D, Schröder-Preikschat W. Efficient extraction and analysis of preprocessor-based
variability.GPCE ’10: Proceedings of the Ninth International Conference on Generative Programming and Component
Engineering. ACM: New York, NY, USA, 2010; 33–42. DOI:10.1145/1868294.1868300.

4. Zengler C, Küchlin W. Encoding the Linux kernel configuration in propositional logic. ECAI ’10: Proceedings of
19th European Conference on Artificial Intelligence (Workshop on Configuration), 2010; 51–56.

5. Lotufo R, She S, Berger T, Czarnecki K, Wąsowski A. Evolution of the Linux kernel variability model. SPLC’10:
Proceedings of the 14th International Conference on Software Product Lines: Going Beyond, Springer-Verlag:
Berlin, Heidelberg, 2010; 136–150.

6. Liebig J, Apel S, Lengauer C, Kästner C, Schulze M. An analysis of the variability in forty preprocessor-based
software product lines. ICSE ’10: Proceedings of the 32nd International Conference on Software Engineering, vol. 1,
2010; 105–114. DOI:10.1145/1806799.1806819.

7. Nadi S, Holt R.Make it or break it: Mining anomalies in Linux Kbuild.WCRE ’11: Proceedings of the 18th Working
Conference on Reverse Engineering, 2011. DOI:10.1109/WCRE.2011.46.

8. Berger T, She S, Lotufo R, Czarnecki K, Wąsowski A. Feature-to-code mapping in two large product lines. Software
Product Lines: Going Beyond 2010; 6287:498–499.

9. Dietrich C, Tartler R, Schröder-Preikschat W, Lohmann D. Understanding Linux feature distribution. AOSD-MISS
’12: Proceedings of the 2nd AOSD Workshop on Modularity in Systems Software, 2012. DOI:10.1145/
2162024.2162030.

10. Dietrich C, Tartler R, Schröder-Preikschat W, Lohmann D. A robust approach for variability extraction from the
linux build system. SPLC ’12: Proceedings of the 16th International Software Product Line Conference (to appear),
2012.

11. Nadi S, Holt R. Mining Kbuild to detect variability anomalies in Linux. CSMR ’12: Proc. of the 16th European
Conference on Maintenance and Reengineering, 2012.

12. Undertaker. Available at: http://vamos.informatik.uni-erlangen.de/trac/undertaker [Accessed 1 July 2012].
13. Adams B, Tromp H, De Schutter K, De Meuter W. Design recovery and maintenance of build systems. ICSM ’07:

Proceedings of the 23rd IEEE International Conference on Software Maintenance, 2007; 114–123.
14. Kästner C, Giarrusso P, Rendel T, Erdweg S, Ostermann K, Berger T. Variability-aware parsing in the presence of

lexical macros and conditional compilation. OOPSLA ’11: Proceedings of the 2011 ACM Conference on Object-
Oriented Programming Systems, Languages, and Applications, 2011.

15. Sincero J, Schröder-Preikschat W. The Linux kernel configurator as a feature modeling tool. SPLC’08: Proceedings
of the 12th International Conference on Software Product Lines: Going Beyond, 2008; 257–260.

16. Berger T, She S, Lotufo R, Wąsowski A, Czarnecki K. Variability modeling in the real: a perspective from the
operating systems domain. ASE ’10: Proceedings of the IEEE/ACM international conference on Automated software
engineering. ACM: New York, NY, USA, 2010; 73–82. DOI:10.1145/1858996.1859010.

17. She S, Lotufo R, Berger T, Wąsowski A, Czarnecki K. Reverse engineering feature models. ICSE ’11: Proceedings
of the 33rd International Conference on Software Engineering. ACM: New York, NY, USA, 2011; 461–470.

18. Adams B, De Schutter K, Tromp H, De Meuter W. The evolution of the Linux build system. EVOL ’07: Proceedings
of the Third International ERCIM Symposium on Software Evolution, vol. 8, 2007.

19. McIntosh S, Adams B, Hassan A. The evolution of Java build systems. Empirical Software Engineering 2011; 17:1–31.
20. Spencer H, Collyer G. #ifdef considered harmful, or portability experience with C news. Proceedings of the Summer

1992 USENIX Conference, Adams R (ed.), USENIX Association: Berkeley, CA, 1992; 185–198.

SARAH NADI AND RIC HOLT

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

http://vamos.informatik.uni-erlangen.de/trac/undertaker

AUTHORS’ BIOGRAPHIES:

Sarah Nadi is a PhD candidate at the University of Waterloo working with Prof. Ric
Holt. Her research interests include using mining software repositories techniques to pro-
vide decision support for difference stages in the software development cycle. She cur-
rently focuses on studying software variability by analyzing the different information
provided by various variability artifacts and finding methods to ensure their consistency.
Her work includes studying variability implementation in build systems, detecting vari-
ability anomalies, and mining historic artifacts to find the causes and fixes of these anom-
alies.

Ric Holt is a professor at the University of Waterloo, where his research interests include
software architecture and mining software repositories (MSR). His architectural visuali-
zations have included Linux, Mozilla (Netscape), IBM’s TOBEY code generator, and
Apache. He is the developer of the Grok relational language. His previous research in-
cludes foundational work on deadlock, development of a number of compilers and com-
pilation techniques, development of one of the first Unix clones, and authoring a dozen
books on programming and operating systems. He is co-designer of the Turing program-
ming language.

LINUX BUILD SYSTEM VARIABILITY

Copyright © 2013 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2013)
DOI: 10.1002/smr

